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PREFACE 

 
This thesis is divided into eight chapters, including this one: 

 

Chapter 1: This is an introductory chapter that addresses the background, rationale and 

relevance of the study, as well as the aim and objectives. The general outline and structure of 

the thesis conclude this chapter. 

 

Chapter 2: This chapter provides a comprehensive literature review on the two GPCR family 

studied in this thesis.  

 

Chapter 3: This chapter provides the theoretical underpinnings of biomolecular simulations 

and computational drug design approaches applied in the thesis. The chapter introduces the 

general applications of computational approaches in pharmaceutical research. The chapter 

further discusses biomolecular simulations and the molecular mechanics force fields that 

govern the simulations of membrane-bound proteins.  

 

Chapter 4: Published work- this chapter is presented in the required format of the journal and 

is the final version of the published manuscript. (Appendix I: Proof of Published Article) 

 

Chapter 5: Published work - this chapter is presented in the required format of the journal and 

is the final version of the published manuscript. (Appendix II: Proof of Published Article) 

 

Chapter 6: Published work - this chapter is presented in the required format of the journal and 

is the final version of the published manuscript. (Appendix III: Proof of Published Article) 

 

Chapter 7: Submitted work - this chapter is presented in the required format of the journal and 

is the final version of the submitted manuscript. (Appendix IV: Proof of Submitted 

Manuscript) 

 

Chapter 8: This is the final chapter presents a general discussion, concluding remarks and 

future research recommendations. 
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ABSTRACT 

G protein-coupled receptors (GPCRs) are the largest membrane protein receptor superfamily 

involved in a wide range of physiological processes. GPCRs form the major class of drug 

targets for a diverse array of pathophysiological conditions. Consequently, GPCRs are 

recognised as drug targets for the treatment of various diseases, including neurological 

disorders, cardiovascular conditions, oncology, diabetes, and HIV. The recent advancement in 

GPCR structure resolutions has provided novel avenues to understand their molecular basis of 

signal transduction, ligand recognition and ligand-receptor interactions. These advances 

provide a framework for structure-based discovery of new drugs in targeting GPCRs implicated 

in the pathogenesis of various human diseases.  

In this thesis, the interactions of inhibitors at two dopamine receptor subtypes and C-C 

chemokine receptor 5 (CCR5) of the Class A GPCR family were investigated. Dopamine 

receptors and CCR5 are validated GPCR targets implicated in neurological disorders and HIV 

disease, respectively. The lack of structural information on these receptors limited our 

comprehension of the structural dynamics and binding mechanisms of their antagonists. The 

recently solved crystal structures for these receptors has necessitated further investigations in 

their ligand-receptor interactions to obtain novel insights that may assist drug discovery 

towards these receptors.   

The paper I of this thesis comprehensively investigated the binding profiles of atypical 

antipsychotics (class I and class II) at the first crystal structure of D2 dopamine receptor 

(D2DR). The class I antipsychotics was found to exhibit binding poses and dynamics different 

from the class II antipsychotics with disparate interaction mechanistic at D2DR active site. 

Remarkably, the class II antipsychotics were observed to establish a recurrent and vital 

interaction with Asp114 via strong hydrogen bond interactions. Furthermore, compared to class 

I antipsychotics, the class II antipsychotics were found to engage favourably with the deep 

hydrophobic pocket of D2DR. 

In Paper II, the structural basis and atomistic binding mechanistic of the preferential selective 

inhibition at D3DR over D2DR were explored. This study investigated two small-molecules 

(R-VK4-40 and Y-QA31) with substantial selectivity (> 180-fold) for D3DR over D2DR. The 

selective antagonists adopted shallow binding modes at D3DR while demonstrating a deep 

hydrophobic pocket binding at D2DR. Also, the vital roles and contribution of critical residues 

to the selective binding of R-VK4-40 and Y-QA31were identified in D3DR. Structural and 
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binding free energy analyses further discovered distinct stabilising effects of the selective 

antagonists on the secondary architecture and binding profiles of D3DR relative to D2DR. 

In Paper III, the atomistic molecular interaction mechanism of how slight structural 

modification between novel derivatives of 1-heteroaryl-1,3-propanediamine (Compd-21 and -

34) and Maraviroc affect their binding profiles significantly at CCR5 were elucidated. This 

study utilised explicit lipid bilayer molecular dynamics (MD) simulations, and advance 

analyses to explore these inhibitory disparities. The thiophene moiety substitution common to 

Compd-21 and -34 were found to enhance their CCR5-inhibitory activities due to 

complementary high-affinity interactions with residues that are critical for the gp120 V3 loop 

binding. The study further highlights the structural modifications that may improve inhibitor 

competitiveness with gp120 V3 loop.  

Finally, paper IV of this thesis applied structure-based virtual screening of antiviral chemical 

database to identify potential compounds as HIV-1 entry inhibitors targeting CCR5. The 

identified compounds made pertinent interactions with CCR5 residues critical for the HIV-1 

gp120-V3 loop binding. Their predicted in silico physicochemical and pharmacokinetic 

descriptors were within the acceptable range for drug-likeness. Further structural optimisations 

and biochemical testing of the proposed compounds may assist in the discovery of novel HIV-

1 therapy. 

The studies presented in this thesis provide novel mechanistic and in silico perspective on the 

ligand-receptor interactions of GPCRs. The findings highlighted in this thesis may assist in 

further research towards the identification of novel drug molecules towards CCR5 and D2-like 

dopamine receptor subtypes.  
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CHAPTER 1 

Introduction 

 
1.1 Background and Rationale of the study 

G protein-coupled receptors (GPCRs) are physiologically essential membrane proteins 

involved in signal transduction of chemicals from the extracellular matrix into the cell. They 

are implicated in many diseases (Latorraca et al., 2017). The GPCRs family represent one of 

the significant successful drug targets due to their direct role in major physiological processes 

regulations. They account for nearly 34% of marketed drugs (Santos et al., 2017). The recent 

explosion in GPCR structures serves as a reliable starting point for in silico drug discovery and 

biomolecular simulations in accelerating drug design opportunities and mechanistic 

understanding of these receptors. As a significant prominent family of drug targets known to 

date, GPCRs continue to be the subject of considerable research efforts directed towards 

discovering improved therapeutics.   

Dopamine receptors and C-C chemokine receptor 5 (CCR5) are validated GPCR drug targets 

implicated in neurological disorders and HIV disease, respectively (Rangel-Barajas et al., 

2015; Tan et al., 2013). Dopamine receptors are an integral member of the family of GPCRs 

that play vital functions in central nervous system neurotransmitters. Numerous neurological 

disorders, such as attention deficit hyperactivity disorder, Parkinson’s disease, depression, and 

schizophrenia, have been associated with dysfunction of the dopaminergic system (Klein et al., 

2019; Rangel-Barajas et al., 2015; Beaulieu & Gainetdinov, 2011). The existing antipsychotic 

drugs that target the different dopamine receptors show poor selectivity between the respective 

dopamine receptor subtypes. Significant adverse effects stem from the lack of selectivity of 

these antipsychotics. These include metabolic syndrome, cardiovascular hypertension, and 

neurological side effects, including extrapyramidal reactions and tardive dyskinesia due to the 

distinctive function of these receptor subtypes, thus reducing the utility of these essential 

groups of drugs. (Álvarez et al., 2013; Ballon et al., 2014; Kaar et al., 2020). The recent 

advancement in the structure determination of the D2-like dopamine receptor provides new 

research opportunities in understanding binding mechanistic and interactions of antipsychotics 

at dopamine receptors (Fan et al., 2020; Wang et al., 2018; Chien et al., 2010; Wang et al., 

2017).  

Another member of the GPCR family involved in the modulation of immune response and as 

an HIV-1 co-receptor is C-C Chemokine receptor 5 (CCR5). During entry into CD4+ T-cells, 
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CCR5 serves as the essential co-receptor of HIV-1. An attractive therapeutic approach to 

blocking HIV-1 infection and replication is the prevention of the entry of HIV into host cells 

(Arimont et al., 2017). The quest to develop inhibitors with the capability of inhibiting HIV 

entry by targeting CCR5 resulted in the approval of the first and only CCR5 antagonist 

(Maraviroc) in 2007 (FDA, 2007). Many CCR5 antagonists have been documented, but very 

few have advanced into clinical use before being discontinued, mainly due to challenging drug-

like properties (Qi et al., 2020). The prescription of Maraviroc is limited due to identified 

factors such as its drug-drug interactions (especially when co-administrated with CYP3A4 

inhibitors), CYP450 inhibition, and viral resistance (Garcia-Perez et al., 2015; Peng et al., 

2018). The rapid global rise in patients diagnosed with HIV, therefore, necessitates the 

discovery of novel therapeutics for HIV treatment with fewer side effects and better efficacy. 

Recently, 1 Heteroaryl-1,3-propanediamine derivatives have been identified as a series of novel 

CCR5 antagonists compared to Maraviroc with low cytotoxicity, exceptional in vitro anti-HIV-

1 profile, and good pharmacokinetic properties (Peng et al., 2018).  

In the selection of compounds for synthesis or further optimisation, the application of 

molecular modelling methods in drug design and development plays an essential role. These 

techniques further provide an atomistic basis in directing further design efforts (Aminpour et 

al., 2019; Cavasotto et al., 2019). Biomolecular simulations are proven methods for exploring 

the conformational landscape of GPCRs at the atomic level as well as inhibitor/drug binding 

mechanisms for biological targets (Latorraca et al., 2017; Alfonso-Prieto et al., 2019). A 

molecular level insight of how small molecules interact with their GPCRs and how 

drugs/small-molecules can selectively target subfamily receptors is critical for the discovery of 

novel treatments of conditions implicated in GPCR family.  

 

1.2 Aims and objectives 

The purpose of this thesis is to provide novel mechanistic insights into how dopamine receptors 

and CCR5 receptors interact with their small molecule inhibitors and to apply a structure-based 

discovery approach to identifying new potential CCR5 inhibitors. The following objectives 

were followed to achieve the above goal: 

1. To provide a comprehensive investigation of the molecular recognition and binding 

mechanistic of atypical antipsychotics drugs at D2 dopamine receptor.  

1.1 Predict through molecular docking, the binding modes of the selected atypical 

drugs. 
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1.2 Embed the drug-receptor complexes in a lipid bilayer and perform MD simulations.  

1.3 Estimate the free energies of the drug-receptor complexes upon binding using 

MMGB/SA end-point free energy approach. 

1.4  Analyse the drug-receptor interactions and characterise residues critical for drug 

binding.  

 

2. To explore the structural basis and atomistic binding mechanistic of the selective 

antagonist blockade at D3 dopamine receptor over D2 dopamine receptor. 

2.1 Predict the binding modes of the D3 selective antagonists at both D2DR and D3DR 

binding site. 

2.2 Perform MD simulations in a lipid bilayer environment to elucidate the structural 

and conformational changes associated with the selective binding.  

2.3 Identify residues that drive the selectivity and higher binding affinity of the studied 

compounds.  

   

3. To elucidate the molecular mechanism and structural dynamics of 1-Heteroaryl-1,3-

propanediamine derivatives interactions with CCR5 in HIV inhibition.  

3.1 Perform all-atom MD simulations of protein-ligand complexes in a lipid bilayer.  

3.2 Post-process MD data to estimate the binding free energy. 

3.3 Identify residues critical for the higher affinity of the novel derivative relative to 

Maraviroc.   

 

4. To identify novel potential HIV-1 entry compounds targeting CCR5  using structure-

based drug discovery techniques.  

4.1 Perform a structure-base virtual high-throughput screening using compounds from 

the Asinex antiviral database. 

4.2 Predict ligand-binding poses and affinities, assess ligand binding mode modes and 

interactions at receptor target. 

4.3 Perform MD simulations on the best hits in a lipid bilayer to evaluate their stability 

at CCR5 binding pocket. 

4.4 To apply in silico techniques in predicting the molecular properties and 

pharmacokinetics (ADME/Tox) of the top compounds. 
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1.3 Novelty and Significance of the Study 

The crystal structures of the D3 dopamine receptor (D3DR) bound to eticlopride, and D4 

dopamine receptor (D4DR) bound to antipsychotic nemonapride were resolved in 2010 (Chien 

et al., 2010) and 2017 (Wang et al., 2017), respectively. The lack of crystallised ligand-bound 

D2DR structures before 2018, however, limited the molecular understanding of ligand 

recognition and receptor function. The first crystal structure of the D2 dopamine receptor bound 

with risperidone solved in 2018 (Wang et al., 2018), followed by haloperidol in 2020 (Fan et 

al., 2020) provided novel insights. An unanticipated binding mode of risperidone was 

discovered by the crystal structure of D2DR bound to atypical antipsychotic risperidone (Wang 

et al., 2018). The observed unexpected binding mode was different from earlier docking studies 

based on a D2DR homology model that used either D3DR or D4DR solved structures as 

templates (Duan et al., 2015; Salmas et al., 2017).  

Interestingly, the recent crystal structure of the risperidone-bound serotonin 2A receptor (5-

HT2AR) also shows the same risperidone binding mode, as observed in D2DR (Kimura et al., 

2019). However, the observed distinct risperidone binding mode and interaction in the crystal 

structure of D2DR and 5-HT2AR could not be replicated by molecular docking approach using 

a homology modelled structure of D2DR (Wang et al., 2018). The related antipsychotic drugs 

binding modes at D2DR, therefore, remained uncertain. There is a need to define risperidone 

and related antipsychotic drugs at the binding pocket D2DR in order to make significant 

progress in the structure-based design of these drug classes. To further clarify the binding 

mechanistic of atypical antipsychotics at D2DR, the paper I of this thesis, addresses this 

research gap. In this paper, the binding mechanistic and conformational changes associated 

with six atypical antipsychotics targeting D2DR have been elucidated (Appiah‐Kubi et al., 

2019).  

The current marketed antipsychotic drugs lack selectivity toward a given D2-like receptor 

subtype (Li et al., 2016). They are associated with considerable adverse effects including 

metabolic syndrome, cardiovascular hypertension, and neurological side effects, including 

tardive dyskinesia and extrapyramidal reactions (Kaar et al., 2020; Ballon et al., 2014; Álvarez 

et al., 2013). The selective antagonist inhibition of D3DR over D2DR have been demonstrated 

to lessen drug-seeking behaviour and associated side effects compared to non-subtype selective 

antagonists (Andreoli et al., 2003; Higley et al., 2011; Galaj et al., 2015; Manvich et al., 2019). 

However, the high degree of sequence conservations between D2DR and D3DR, particularly 
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at the ligand-binding pockets and within the transmembrane (TM) domains, remains a 

challenge to the therapeutic design of subtype-selective antipsychotics.  

The discovery of two small-molecules, R-VK4-40 and Y-QA31 that substantially inhibited 

D3DR with >180-fold selectivity over D2DR was reported in recent studies (Shaik et al., 2019; 

Kumar et al., 2016; Sun et al., 2016). Contrary to the side effect of GSK598,809 and 

SB277011A, which in the presence of cocaine increase blood pressure (Appel et al., 2015; 

Appel & Acri, 2018), R-VK4-40, when administered with cocaine, displays no cardiovascular 

side effects (Jordan et al., 2019). Also, Y-QA31 exhibit antipsychotic effects in cognitive 

dysfunction, negative and positive symptoms without inducing extrapyramidal side effects in 

preclinical models of schizophrenia (Sun et al., 2016). However, the structural determinant and 

atomistic molecular mechanistic by which R-VK4-40 and Y-QA31 achieved their selectivity 

at D3DR over D2DR have not been elucidated. To address this gap, the paper II of this thesis 

provides molecular and structural insights into these differential binding mechanistic using 

meta-analytic computational simulation methods.  

Recently, a new 1-Heteroaryl-1,3-propanediamine derivatives Compd-21 and  Compd-34 

(Peng et al., 2018) were synthesised as CCR5 antagonists. These inhibitors have displayed ~3 

times potency than Maraviroc, with improved pharmacokinetic profiles (Peng et al., 2018). The 

main structural variation between Maraviroc and Compd-34, and Compd-21 is the substitution 

of the phenyl group in Maraviroc with thiophen-2-yl and thiophen-3-yl moieties in Compd-21, 

and Compd-34, respectively. However, atomistic molecular details of the interaction 

mechanisms of how slight structural variance between these inhibitors (Compd-21, Compd-34, 

and Maraviroc) significantly affects their binding profiles at the CCR5 receptor was lacking. 

Paper III of this thesis provided atomistic understanding by identifying molecular properties 

and receptor interactions, which may be useful in the design of more potent HIV-1 entry 

inhibitors targeting CCR5. 

The application of structure-based virtual screening approach successfully identified novel 

potential scaffolds from the unexplored Asinex antiviral compound database toward CCR5. 

The identified compounds provide a basis for further structural optimisation and/or 

biochemical testing of the identified compounds against CCR5.  

Findings from this thesis will expand our understanding of inhibitor binding interactions at the 

D2-like dopamine and CCR5 receptor as well as assist in identifying novel compounds for 

further optimisation and characterisation.   
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CHAPTER 2 

2.1 Overview to G protein-coupled receptors   

The largest transmembrane receptor superfamily encoded in the human genome are the G 

protein-coupled receptors (GPCRs), which control several major physiological processes. The 

human genome alone account for about 800 unique GPCRs and are important therapeutic 

targets of many potent drugs (Ghosh et al., 2015; Odoemelam et al., 2020). GPCRs can sense 

the presence of a diverse range of molecules outside the cell and in response, activate various 

intracellular signals (Latorraca et al., 2017). The direct role of GPCRs in controlling major 

physiological processes has made them one of the most effective drug targets, and account for 

almost 35% of all FDA-approved drugs (~700 drugs) (Sriram & Insel, 2018). However, these 

drugs target only 134 unique GPCRs, primarily the Class A (Rhodopsin) receptors such as 

histamine receptors, muscarinic receptors, dopamine receptors, adrenoceptors, and serotonin 

receptors (Garland, 2013; Hauser et al., 2018; Sriram & Insel, 2018).  

 

The ability of GPCRs to convey signals via the cell membrane relies on their potential to 

undergo conformational changes. Diverse extracellular ligands varying from proteins (such as 

chemokines) to neurotransmitters to small hormones, bind to the extracellular region and 

induce structural changes to allow signalling proteins (e.g. arrestins and G proteins) to bind to 

the intracellular surface of GPCR (Figure 2.1) (Latorraca et al., 2017). The structural basis for 

GPCR’s ligand recognition and the understanding of the process of their dynamic signalling 

had been a challenge in the past two decades, especially for rational drug design. However, 

recent progress in GPCR structure biology has provided a novel understanding of GPCRs 

dynamics, signalling pathways, and ligand binding interactions. Thus, providing novel 

opportunities for structure-based drug discovery and selective drug development among 

receptor subtypes.   

 

2.1.1 Classifications of GPCRs 

Based on GPCRs amino acid sequence homology and functional similarity, the commonly used 

classification scheme is the A-F system (Kolakowski Jr, 1994; Attwood & Findlay, 1994). Six 

classes (A-F) of GPCR sequences from humans, animals and plants are identified by this 

classification scheme, with only four categories (A, B, C, and F) identified in humans. Class A 

also called the “rhodopsin-like family” comprises hormones, neurotransmitters, and light 
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receptors, representing about 80 % of GPCRs. The Class A is generally distinguished 

structurally by seven TM helices, an eighth helix, a C-terminal tail, and a short N-terminus. 

 

 
Figure 2.1 GPCR signalling: The binding to an inactive GPCR by an orthosteric agonist ligand 
(in orange); (B) the active state of the ligand-bound GPCR due to conformational changes in 
complex formation; and (C) the active state of the GPCR complex binds to a G protein, which 
then activates the G protein’s alpha-subunit (Image adapted from (Latorraca et al., 2017)). 
 

The Class B, commonly called the “secretin receptor family”, consists of approximately 70 

receptors. The structural characteristics of Class B are a seven-transmembrane and an N-

terminal of about 120 residues. The metabotropic glutamate family, taste receptors, the GABA 

receptor and calcium-sensing receptors constitute the Class C GPCRs. Seven TM helices and 

an N-terminal domain of around 500 residues structurally define these receptors. The fungal 

pheromone mating receptors, the slime mold cAMP receptors and frizzled/smoothed receptors 

constitute the Class D, the Class E and Class F, respectively.   

 

Another GPCR classification system is the grouping of the human GPCRs into five families 

known as “GRAFS” (Schiöth & Fredriksson, 2005; Fredriksson et al., 2003). The GRAFS 

system comprises the families of Class C (Glutamate), Class A (Rhodopsin), Class B2 

(Adhesion), Class F (Frizzled/Taste2) and Class B1 (Secretin), based on a phylogenetic 

analysis of nearly 800 sequences from the human GPCR (Fredriksson et al., 2003) (Figure 2.2). 

The GRAFS system differs from the A-F system in that it further divides Class B receptors into 

two families, Secretin (class B1) and Adhesion (class B2). This distinction is based on an initial 
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observation that the evolutionary background of the families of Secretin and Adhesion differs 

from one another. Furthermore, it also adds the Taste2 receptors in the Frizzled receptor family. 

 

 
Figure 2.2 Phylogenetic relationship in the human genome of GPCRs (TMI–TMVII). This 
phylogenetic analysis is based on the “GRAFS” classification system. The different colours of 
the tree represent the different families (Image adapted from (Fredriksson et al., 2003)).   
 
 
2.1.2 Structural characteristics of G protein-coupled receptors 

Three divisions primarily characterise GPCR structures: (i) an extracellular section consisting 

of three extracellular loops and the N-terminus forming the opening to the ligand-binding site; 

(ii) seven alpha-helical transmembrane regions (TM1-TM7); and (iii) an intracellular section 

consisting of an intracellular amphipathic helix (H8), the three intracellular loops (ICL1-ICL3), 

and the C-terminus (Figure 2.3) (Heifetz et al., 2020; Latorraca et al., 2017). In general, ligand 

entry is regulated by the extracellular region; the transmembrane (TM) domain binds ligands, 

constitutes the structural core and transmits molecular signals through conformational changes 
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to the intracellular part; and the intracellular region couples with signalling proteins such as G 

proteins and arrestins (Heifetz et al., 2020).  

 
Figure 2.3 GPCRs’ general design and structural characteristics. (A) the three extracellular 
loops (ECLs) and the N-terminus (in orange), the seven transmembrane helices region (in 
gray), and the three extracellular loops and the C-terminus (in purple). (B) GPCR general 
architecture displayed in cartoon representation (Image adapted from (Latorraca et al., 2017)).  
 

When triggered by the binding of G protein and an agonist ligand, GPCRs usually change from 

the inactive state to active state conformations. Hydrophobic patterns and different functionally 

structural signature motifs characterise the strongly conserved transmembrane domains of 

GPCRs. The NPxxY motif (connecting TM7 and helix 8), the CWxP motif (TM6), and the 

D(E)RY motif (TM3) compose these motifs. To retain the receptor in its ground state, the ionic 

interaction (ionic lock) of the TM3 conserved D(E)RY motif has been observed (Rovati et al., 

2007).  

 
2.1.2.1 Transmembrane and extracellular residue indexing methods for GPCRs 

Superscripts are assigned to residues of the transmembrane regions (TM1-TM7) based on the 

Ballesteros-Weinstein numbering system (Ballesteros & Weinstein, 1995) to enable 

comparison of residues among the different GPCRs. The residues of the extracellular and 

intracellular loop regions are not applied with the Ballesteros-Weinstein numbering approach 

because of the high variation in sequence and length. The developers of the GPCRdb (Isberg 

et al., 2016) have used a numbering system for the extracellular and intracellular loop regions 
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based on the Ballesteros-Weinstein approach for some regions. The Ballesteros-Weinstein 

nomenclature assigns each transmembrane residue with an index number corresponding to the 

position of the residue in that transmembrane domain. For example, the conserved GPCRs Asp 

residue in TM3 (which is Asp1103.32 in D3DR and Asp1143.32 in D2DR) is denoted as Asp3.32 

where 3 stands for TM3 and 32 stands for the position of the Asp residue in TM3.  This 

technique enables the different GPCRs to be compared using the most conserved residues as a 

reference point. The Ballesteros-Weinstein and the GPCRdb numbering schemes are used in 

this thesis. 

 

2.1.3 GPCR function, activation, and signal transduction pathways 

The physiology of most vertebrate relies on GPCR signal transduction. GPCRs can recognise 

different types of signals, such as small molecules, peptides, photons of light, lipids, hormones, 

and proteins. GPCRs are crucial nodes of information exchange between the extracellular and 

intracellular environment of cells. The mechanisms of GPCR activation, signalling and 

regulation are markedly conserved and exemplify evolutionary convergence (Deupi et al., 

2012; Reiter et al., 2012; Reiter & Lefkowitz, 2006) (Figure 2.4). Generally, in GPCR 

activation, ligand binding involves the N-terminus, the exposed transmembrane helices, and 

the extracellular loops. In contrast, G protein-coupling and signal transduction involve the 

intracellular regions and loops. GPCRs have the classical role of coupling the binding of an 

extracellular ligand to the binding pocket and activating distinct heterotrimeric G proteins 

(subunits of Gβ and Gγ,  Gβ and Gα), resulting in modulations of downstream effector proteins. 

The heterotrimeric G proteins subsequently dissociate from the receptor sending signals that 

produce second messengers including Ca2+, cAMP, and inositol phosphates (e.g. IP3), which 

then activates various cellular responses.   

The activated GPCR can bind to β-arrestins with high affinity when phosphorylated (Kang et 

al., 2014; Tian et al., 2014). To desensitise G protein signalling, β-arrestins avert additional 

coupling of G proteins to the activated receptor. β-arrestins have been identified as independent 

signal transducers, controlling signalling processes such as protein synthesis, apoptosis, cell 

migration and the activation of mitogen-activated protein kinases that regulate the 

cytoskeleton. GPCRs play a vital role in controlling diverse physiological functions for 

example taste, secretion, nervous system control, smell, vision, metabolism, immune response, 

embryonic growth, and cell differentiation, and cell differentiation. As a consequence, GPCR 

dysfunction is involved in a variety of diseases, including neurological/neurodegenerative 
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disorders (Guimarães & Thathiah, 2020; Azam et al., 2020; Huang et al., 2017), diabetes 

(Gupta & Vasudevan, 2019; Sebastiani et al., 2018), cardiovascular disease (J. Wang et al., 

2018), obesity (Riddy et al., 2018), cancer (Cerchio & Chen, 2020; Gad & Balenga, 2020), 

HIV (Brelot & Chakrabarti, 2018), and inflammation (Lin et al., 2017), making GPCRs crucial 

drug target for pharmaceutical developments.  

 

Figure 2.4 A schematic representation of GPCR activation and signalling (Image adapted 
from (Ghosh et al., 2015)). 
 

2.1.4 Advances in GPCR structure determination 

Structural knowledge of GPCRs offers a deeper understanding of their molecular mechanisms 

for cell signalling and ligand recognition, which assist in the novel development of effective 

drugs for severe human diseases treatment. The crystallisation and determination of GPCR 

structures were deemed to be almost impossible before the recent revolution. This was due to 

the inherent conformational flexibility of GPCRs which posed as a challenge in the efforts to 

obtain their crystal structures. Considerable challenges that hampered the structure 

determinations and molecular understanding of GPCRs were the inability to obtain pure, stable, 

and functional samples.  

 However, significant progress has been made in GPCR structure determination since the first 

solved bovine rhodopsin receptor structure in 2000 (Palczewski et al., 2000). This was followed 

by the first high-resolution crystal structures of the non-rhodopsin-like GPCR of the human β2-

adrenoceptor (β2AR) bound with the inverse agonist (carazolol) and Fab5 (Rasmussen et al., 

2007), and β2AR in complex carazolol (Cherezov et al., 2007) in 2007. Aside from the detailed 

interactions demonstrated between β2AR and carazolol, the structural determination success 
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also provided novel strategies for the optimisation and crystallisation of GPCR structures. The 

advancements in X-ray crystallographic methods of data collection, including X-ray free-

electron lasers (XFELs) and micro-focus X-ray sources at synchrotrons, were included in the 

novel strategies. Also, advances in protein engineering (e.g., thermo-stabilizing mutations 

(Tate, 2012) and fusion proteins, for instance, T4 lysozyme (Chun et al., 2012)), data 

acquisition (Liu et al., 2014), and structural biology (e.g., lipid cubic phase (LCP) 

crystallisation (Caffrey & Cherezov, 2009; Caffrey, 2015) and cryo-electron microscopy (cryo-

EM) (Liang et al., 2017)) have increased the number GPCR structures. The application of these 

novel techniques and guidelines have propelled the progress of GPCR structure determination 

in less than two decades (Table 2.1 and Figure 2.5).  

Table 2.1 Statistics of solved GPCR structures obtained from the PDB database, includes 
multiple receptor complexes (Table extracted from https://gpcrdb.org/structure/statistics 
accessed on 20 October 2020; Last updated 2020-09-30).  

Class Class A Class B1 Class B2 Class C Class F Total 

Unique Receptor complexes# 70 10 0 4 3 87 

Receptors* 404 46 0 17 19 486 

Receptor-ligand structures* 397 45 0 17 19 478 

Active-state structures* 106 31 0 2 6 145 

G protein-Receptor structures* 9 30 0 0 0 39 

*Orthologues receptors are counted more than once. # A receptor with more than one 
structure bound to diverse ligands was counted once. The active state is characterised as an 
intracellular TM bundle that is agonist-bound and open. 

 

More recently, cryo-electron (cryo-EM) microscopy has emerged as a modern technique for 

determining membrane protein structures (Thal, Vuckovic, et al., 2018; García-Nafría & Tate, 

2020), causing a surge in the quality and number of available GPCRs. Several high-resolution 

solved structures have been solved for chemokine receptors, aminergic receptors, nucleotide 

receptors, lipid receptors, and peptide receptors. These structures provide insights into receptor 

function and ligand-recognition of GPCRs and enable possible comparison of important details 

between various GPCR subtypes (Qu et al., 2020). Consequently, computational investigations 

of biomolecules have greatly benefited from the increased crystal structures as they provided 

reliable starting structure for computational studies (Hollingsworth & Dror, 2018).  
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Figure 2.5 The increase in the number of GPCR structure determinations over time for each 
receptor of the various classes of GPCRs obtained from the GPCRdb database (Image adapted 
from https://gpcrdb.org/structure/statistics, accessed in October 2020).  
 
2.1.5 G protein-coupled receptors as targets for drugs. 

The substantial involvement of GPCRs in various pathophysiological processes makes them 

an important drug target and constitutes the largest FDA-approved drug family (Allen & Roth, 

2011; Rask-Andersen et al., 2014; Santos et al., 2017). The high proportion of drugs targeting 

the GPCR family can be attributed to various factors including their ability to bind to drugs 

with higher affinity, their interactions with several types of chemical entities, and their plasma 

membrane expression facilitates extracellular molecular interactions (Sriram & Insel, 2018). It 

is projected that there are nearly 700 validated drugs that target 134 GPCRs, which accounts 

for about 35% of all FDA approved drugs (Sriram & Insel, 2018). It is estimated that two-thirds 

of the current drugs targeting GPCRs frequently targets the cyclic adenosine monophosphate 

(cAMP) signalling pathways (Sriram & Insel, 2018). Drugs targeting GPCRs may act as an 

antagonist or agonists (inverse or neutral agonist), with the majority acting as an antagonist.  

The rhodopsin α-subgroup receptors such as the cannabinoid, adrenergic, muscarinic, 

dopamine, serotonin, and histamine receptors are vital drug targets for anti-histamines, 

cardiovascular drugs, and antipsychotics (Tyndall & Sandilya, 2005; Jacoby et al., 2006). The 
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rhodopsin β-subgroup are drug targets pursued in conditions such as hormone-related cancer 

(Kotake et al., 1999) and pulmonary arterial hypertension (Barst et al., 2004). The chemokine 

receptors are drug targets because of their function as coreceptors in HIV-1 strain (Onuffer & 

Horuk, 2002), chronic and acute inflammations (Kraneveld et al., 2010; Elemam et al., 2020) 

and in cancer immunotherapy (Mollica Poeta et al., 2019). The opioid receptors are vital drug 

targets for pain, alcoholism and cough treatment (Tyndall & Sandilya, 2005).  

 

2.1.6 GPCRs and Structure-based drug discovery  

The current rise in structures of GPCRs has offered valuable knowledge to facilitate structure-

based drug design and discovery. These structural insights into the binding of ligands and 

activation of the receptor, when combined with computational approaches, can significantly 

accelerate the discovery of new ligands for GPCRs (Qu et al., 2020). Structure-based virtual 

screening and lead optimisation have proved its immense potential in discovering drugs 

targeting GPCRs.  

Katritch et al. and Carlsson et al. have applied successfully structure-based virtual screening in 

identifying novel ligands targeting adenosine A2A receptor (A2AAR) (Katritch et al., 2010; 

Carlsson et al., 2010). The screening of 1.4 million compounds by Carlsson et al. using 

molecular docking against A2AAR resulted in the experimental validation of 20 high-ranking 

molecules. Finally, seven of the hits were validated as new selective ligands of A2AAR 

(Carlsson et al., 2010). On over four million compounds, Katritch et al. also used structure-

based virtual screening techniques and reported 53 hits against A2AAR (Katritch et al., 2010). 

In another structure-based study, Rodríguez et al. identified nine experimentally confirmed 

novel serotonin (5-hydroxytryptamine [5-HT]) subtype-selective ligands with a preference for 

5-HT1B over 5-HT2B subtype from 1.3 million compounds (Rodríguez et al., 2014). The nine 

demonstrated selective compounds exhibited up to 300-fold selectivity towards 5-HT1B with 

three compounds been agonist of the G protein pathway (Rodríguez et al., 2014).  

Other success structure-based discoveries include the identification of novel ligands at Beta-2 

Adrenergic Receptor (β2AR) (Yakar & Akten, 2014; Kolb et al., 2009); the discovery of the 

potent opioid analgesic PZM21 with reduced side effects targeting at μ-Opioid-Receptor 

(µOR) (Manglik et al., 2016); and novel effective HIV entry inhibitors targeting C-C 

chemokine receptor 5 (Peng et al., 2018). Also, fragment-based screening was performed by 

Christopher et al. on 3500 compounds at metabotropic glutamate receptor 5 (mGlu5) and 

identified the negative allosteric modulator pyrimidine 5 (Christopher et al., 2015). Several 
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candidate drugs developed via structure-based techniques are presently in clinical trials or 

preclinical development for conditions varying from neurological disorders to cancer (Hauser 

et al., 2017; Congreve & Marshall, 2010). More recently, the D2 dopamine receptor crystal 

structure bound with haloperidol aided in the identification of two novel D2DR subtype-

selective agonists (O4SE6 and O8LE6) that exclude agonism at D4DR and D3DR (Fan et al., 

2020). 

 
2.2 Overview of Dopamine Receptors 

Dopamine is a crucial and dominant catecholamine neurotransmitter in the brain. The 

dopaminergic receptors mediate the physiological actions of dopamine. Dopamine receptors 

are essential members of the GPCRs superfamily of Class A membrane receptors (Beaulieu & 

Gainetdinov, 2011; Thal, Glukhova, et al., 2018). There are five closely related but different 

dopamine receptor subtypes to date, namely: D5, D4, D3, D2, and D1 dopamine receptors. These 

subtypes are classified further into D2-like receptors (D4, D3 and D2) and D1-like receptors (D5, 

and D1) based on structure and pharmacological role (Baik, 2013). The D1 and D2 dopamine 

receptors are primarily and abundantly expressed in the brain (D1 is highly expressed) and the 

two are rarely co-expressed in the same cells (Missale et al., 1998; Baik, 2013). Two D2 

dopamine receptor (D2DR) isoforms are available, namely the long (D2L) and the short (D2S) 

isoforms produced by alternative splicing (Giros et al., 1989; Dal Toso et al., 1989; Shioda, 

2017). These isoforms are similar, except that they differ in the insertion of only 29 amino 

acids in the D2L intracellular loop, which has been posited to assist in determining the 

specificity of the second messenger (Żuk et al., 2020; Baik, 2013; Giros et al., 1989).  

Dopamine receptors expression is mainly abundant in the central nervous system (CNS) and 

the peripherals such as kidneys, blood vessels, retina, heart, the renin-angiotensin system, and 

adrenals controlling the release of catecholamine (Beaulieu & Gainetdinov, 2011). Figure 2.6 

depicts the dopaminergic pathways, dopamine receptors and dopamine distributions in the 

central and peripheral systems. In the mammalian brain, four dopaminergic pathways have 

been established, namely: mesocortical, mesolimbic, nigrostriatal, and tuberoinfundibular 

(Figure 2.6B). These neurons play an essential function in the CNS, such as 

cognition, locomotor activity, emotion, appetite, reward, attention, sleep, learning, and 

working memory. Dopamine can regulate endocrine, heart rate, kidney function, 

cardiovascular function, gastrointestinal motility and so on in the periphery (Vallone et al., 

2000). For D2-like dopamine receptors, dopamine has a higher affinity ranging from 10 to 100-
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fold than for D1-like dopamine receptors. The D1 dopamine receptor has the lowest dopamine 

affinity (Beaulieu & Gainetdinov, 2011; Tritsch & Sabatini, 2012).   

 

 

Figure 2.6 The peripheral expression of dopamine receptors and dopamine (A) and the central 
nervous system distribution of four major dopaminergic pathways (B). The ventral tegmental 
area (VTA) is the centre of the mesocorticolimbic system: dopaminergic neurons are 
transmitted by the mesocortical pathway (blue) to the cortex and by the mesolimbic pathway 
(red) to the nucleus accumbens. The tuberoinfundibular pathway (green) is formed by 
dopaminergic neurons projecting from the hypothalamic nuclei to the pituitary. In contrast, in 
the projection of the substantia nigra (SN) to the striatum, dopamine neurons form the 
nigrostriatal pathway (orange) (Klein et al., 2019)).  
 

2.2.1 Dopamine receptor signalling  

The binding of dopamine to a receptor produces intracellular responses depending on the kind 

of dopamine receptor stimulated. The downstream signalling of dopamine primarily includes 

G proteins, although, G protein-independent signalling pathways can also be involved in 

dopamine receptor signalling (Luttrell & Lefkowitz, 2002). The D2-like and D1-like dopamine 

receptors are functionally different in the manner they modulate their intracellular signalling 

pathways.  

The adenosine triphosphate (ATP) is converted into 3'-5'-cyclic adenosine monophosphate 

(cAMP), as a result of adenylyl cyclase (AC) protein activation induced by the coupling of D1-

like receptors to Gαs/olf protein (Sunahara & Taussig, 2002). The cAMP then stimulates the 

activity of the protein kinase A (PKA) by interacting with the catalytic and regulatory subunits 

of PKA, which then induce the release of catalytic subunits for the phosphorylation of various 

substrates (Akimoto et al., 2013) (Figure 2.7). The DARPP-32 phosphorylation at the Thr34 
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residue causes inhibition of phosphatase-1 (PP1) protein (Nishi, Snyder, et al., 1999). In 

contrast, the Thr75 of DARPP-32, when phosphorylated by cyclin-dependent kinase 5 (Cdk5), 

inhibits PKA activity and thus suppresses the signalling of D1-like dopamine receptors (Bibb 

et al., 1999; Undieh, 2010). It has also been documented that activation of the D1-like dopamine 

receptor controls the electrochemical gradient through Na+K+-ATPase, pumping potassium in 

and sodium out of cells. It has also been shown that activation of D1-like dopamine receptors 

inhibits Na+K+-ATPase through PKA and PKC signalling pathways in the striatum (Gomes & 

Soares-da-Silva, 2002; Nishi, Fisone, et al., 1999) (Figure 2.7). 

 
Figure 2.7 The intracellular signalling pathways of D1-like dopamine receptors, showing 
dopamine-mediated effects through complex activation of intracellular signals. Red arrows 
indicate stimulatory effects, blue lines ending with circles for inhibitory effects, and plausible 
activation indicated by the dashed red arrow (Image adapted from (Rangel-Barajas et al., 
2015)). 
 
The Gαi/o class of G proteins is the central mediator of D2-like signalling (i.e., D4, D3, and 

D2 dopamine receptors). Contrary to D1-like receptors, D2-like receptors coupling to Gαi/o 

protein inhibits (AC) and decrease the intracellular concentration 3'-5'-cyclic adenosine 

monophosphate (cAMP), resulting in the blocking of protein kinase A (PKA) activity (Beaulieu 

& Gainetdinov, 2011; Akimoto et al., 2013) (Figure 2.8). After the stimulation of D2-like 
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receptors, DARPP-32 phosphorylation at Thr34 is usually decreased because of diminished 

PKA activation. 

 

 

Figure 2.8 The intracellular signalling pathways of D2-like dopamine receptors, showing 
dopamine-mediated effects through complex activation of intracellular signals. These signals 
relate to functions including proteasomal degradation, cell proliferation, neurodevelopment, 
and cognitive process. Where red arrows indicate stimulatory effects, blue lines ending with 
circles for inhibitory effects, and plausible activation indicated by the dashed red arrow (Image 
adapted from (Rangel-Barajas et al., 2015)). 
 

2.2.2 Structure determination of dopamine receptors 

Advances GPCR structure determination has led to the crystallisation of all the D2-like 

dopamine receptors; however, none of the D1-like receptors has being crystallised yet (Table 

2.2 and Figure 2.9). The first experimental structure of G Protein coupled to D2DR embedded 

in a lipid membrane was resolved recently by cryo-electron microscopy (cryo-EM) (Yin et al., 

2020). These resolved structures have provided novel insights into the recognition of ligands 

and dopamine receptor activation process. 
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Figure 2.9 Crystal structures: (A) human D2 dopamine receptor in complex with risperidone 
antagonist (orange carbon spheres) and haloperidol antagonist (yellow carbon spheres). (B) 
human D2 dopamine receptor–G-protein complex with the bromocriptine agonist (yellow 
carbon sphere). The receptor is shown in cyan, Gαi in magenta, Gβ in green, and Gγ in orange. 
(C) Human D4 dopamine receptor (cyan) in complex with nemonapride (yellow carbon 
spheres) and the mouse D4 dopamine receptor bound to the subtype-selective antagonist 
L745870 ( orange carbon sphere) and (D) the human D3 dopamine receptor bound to the D2/D3 
agonist eticlopride (orange carbon spheres) (Image prepared with UCSF Chimera program by 
author). 
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Table 2.2 List of solved structures dopamine receptors.  

Dopamine receptors 
Receptor Species Ligand Ligand 

Function 
PDB 
code 

Resolution 
(Å) 

Year Reference Method 

 
 

D2 

 
 
 

Human 

Bromocriptine 
G-protein 

Agonist 
Signalling-

protein 

6VMS 3.80 2020 (Yin et al., 
2020)  

cryo-EM 
 

Haloperidol Antagonist 6LUQ 3.10 2020 (Fan et al., 
2020)  

 
 
 

x-ray 
  

Risperidone Antagonist 6CM4 2.87 2018 (S. Wang 
et al., 
2018) 

D3 Human Eticlopride Antagonist 3PBL 2.89 2010 (Chien et 
al., 2010)  

 
D4 

Human Nemonapride Antagonist 5WIU 1.96 2017 (Wang et 
al., 2017)  5WIV 2.14 

Mouse L745870 Antagonist 6IQL 3.50 2019 (Zhou et 
al., 2019)  

 

2.2.3 Diseases implicated in the dysfunction of the dopaminergic system  

The dopaminergic pathway is involved in diverse physiological processes, including motor 

behaviour, neuroendocrine function, cognitive function, and emotion (Klein et al., 2019). 

However, the dysfunction of the dopaminergic signalling pathways is involved in several 

neurological and psychiatric conditions including schizophrenia, Parkinson’s disease, bipolar 

disorder, substance abuse or addiction, Huntington’s disease, attention deficit hyperactivity 

disorder (ADHD), and depression (Rangel-Barajas et al., 2015; Maggio et al., 2015; Beaulieu 

& Gainetdinov, 2011; Heidbreder & Newman, 2010; Klein et al., 2019).   
 

2.2.4 Drugs targeting D2-like dopamine receptors and recent advances in drug discovery  

The dopamine receptors are the major pharmacological targets of all the existing antipsychotic 

medications. Within the dopamine receptor subtypes, the D2-like receptors (D2/D3) are the 

essential targets of these antipsychotics. Agonists targeting D2-like dopamine receptors are 

subdivided into ergoline agonists (including cabergoline, pergolide, bromocriptine, and 

lisuride) and non-ergoline agonists (including pramipexole and ropinirole) (Brooks, 2000). 
Apomorphine is a D2-like and D1-like dopamine receptor agonist demonstrated to improve the 

symptoms of Parkinson’s disease and is administered via subcutaneous injection (Schwab, 

1951; Brooks, 2000). Antipsychotics acting as antagonists have been classified as first-

generation or typical and second-generation or atypical, with the second-generation 

antipsychotics demonstrating potent antagonism at D2 dopamine receptor and serotonin 2A 

receptor (5-HT2A) (Figure 2.10 and 2.11).  
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Figure 2.10 2D chemical structures of commonly prescribed first-generation (typical) 
antipsychotic medications (Image prepared by author). 
 

The existing FDA-approved antipsychotic drugs lack selectivity toward a given D2-like 

receptor subtype, and they also interact with other GPCRs, for instance, serotonergic, 

adrenergic, cholinergic, and histaminergic receptors (Li et al., 2016; Moritz et al., 2018). 

Consequently, there has been a recent paradigm shift towards selective drug targeting of the 

diverse dopamine receptor subtypes in the treatment of neurological conditions, such as drug 

addiction, Parkinson’s disease, and schizophrenia. The recent shift is imperative since the 

approved antipsychotics are accompanied with substantial adverse effects such as metabolic 

syndrome, cardiovascular hypertension, and neurological side effects, including 

extrapyramidal reactions and tardive dyskinesia (Kaar et al., 2020; Ballon et al., 2014; Álvarez 

et al., 2013). These undesirable effects reduce patient compliance with medications and the 

quality of life (Novick et al., 2010; Lieberman et al., 2005). The selective targeting of each D2-

like receptor subtype has been shown to produce fewer side effects (Li et al., 2016; Holmes et 

al., 2004). Antagonists with higher selectivity for D3 dopamine receptor (D3DR) over D2 

dopamine receptor (D2DR) have been shown to show promising results in reducing cocaine, 

and opioid reward and are highly effective in mitigating relapse to drug-seeking behaviour in 

preclinical models (Andreoli et al., 2003; Higley et al., 2011; Galaj et al., 2015). The 

availability of crystal structures for all the D2-like dopamine receptors provides a reference 
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point for the rational design of novel scaffold molecules toward D2-like subtype-selective 

drugs.  

 
Figure 2.11 2D chemical structures of commonly prescribed second-generation (atypical) 
antipsychotic medications (Image prepared by author). 
 

2.3 Overview of CC Chemokine receptors 

Chemokines are chemotactic cytokines that signal proteins that regulate different functions, 

such as recruitment of immune cells and immune surveillance. There are approximately 50 

chemokine endogenous ligands identified in mice and humans, which makes chemokines the 

most common class of cytokines (Griffith et al., 2014). They have been shown to be essential 

for human immune system development and homeostasis, and are necessary for all destructive 

or protective immune and inflammatory activities (Hughes & Nibbs, 2018). Based on the 

structure and the number of N-terminal cysteine residues, these chemokines are categorised 

into the CX3C, CXC, CC, and XC subfamilies. The chemokines are also designated as “R” to 

denote the receptor and consist of seven N-terminus and C-terminus transmembrane helices 

common to the GPCR family (Murphy, 2002).  

CCR5 with endogenous antagonists including MIP-1α (CCL3), MIP-1β (CCL4), and RANTES 

(Regulated upon Activation, Normal T cell Expressed and Presumably Secreted, CCL5) has 

been recognised as a functional GPCR (Combadiere et al., 1996; Samson et al., 1996). The 

cotaxin, the monocyte chemotactic proteins (MCP-4, MCP-3, and MCP-1), and several other 



26 
 

CC chemokines were later identified to bind CCR5 with varied affinities and efficiencies 

during receptor activation (Blanpain et al., 1999). Table 2.3 shows the identified chemokines 

as endogenous ligands of CCR5. The quest to develop chemokine antagonists started when the 

chemokine receptors CCR5 and CXR4 were identified as coreceptors of human HIV-1 virus 

(Deng et al., 1996). The major surface coreceptors that promote HIV-1 entry are CCR5 and 

CXCR4, of which CCR5 is dominant (51 %) in cases of HIV-1 infection. The R5-tropic strains 

of HIV-1 primarily use the coreceptor CCR5 during the development of a new infection. The 

determinant (X4 tropic or R5 tropic) of the virus tropism depends on the selectivity of the 

coreceptor (Berger et al., 1998).   

 

Table 2.3  Chemokine receptors and chemokines associated with CCR5 

Chemokine receptor Chemokines 
Common Name Systematic Name 

CCR2, CCR4 MCP-1 CCL2 
CCR1, CCR4, CCR5 MIP-1α CCL3 
CCR5, CCR3, CCR1 RANTES CCL5 

CCR5 MIP-1β CCL4 
CCR5, CCR3, CCR2 MCP-4 CCL13 

CCBP2, CCR5 LD78β CCL3L1 
CCR5, CCR3, CCR2, CCR1 MCP-3 CCL7 

CCR1, CCR2B, CCR3, CCR5 MCP-2 CCL8 
 

2.3.1 Structure determination of Chemokine Receptors 

Presently, the crystal structures of seven different chemokine receptors—CCR9, CCR7, CCR5, 

CCR2, CXCR4, CXCR1 and the homologue US28 of the viral chemokine–receptor CX3CR1 

have been determined (Table 2.4). The resolved structures of the chemokine receptors provide 

valuable insights into the structural basis of ligand recognition and chemokine-receptor 

activation. These structures reveal the variety of ligand binding sites as they mostly come 

bound with chemokine ligands, small molecule antagonists, or modified peptides (Figure 2.12).  
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Figure 2.12 Superposition of CCR5 crystal structures in complex with gp120 and antagonists. 
(A) The full length unmodified CCR5 (cyan) in complex with gp120 (yellow) and CD4 (green) 
(PDB ID: 6MEO); CCR5 (sky blue) in complex with Maraviroc (orange) (PDB ID: 4MBS): 
CCR5 (light green) in complex with Compound 21 (Magenta) (PDB ID: 6AKX); and CCR5 
(plum) in complex with Compound 34 (Purple) (PDB ID: 6AKY). (B) gp120 V3 loop overlaps 
with CCR5-antagonists (Maraviroc, Compound 21 and Compound 32) at CCR5 binding pocket 
(Image prepared with UCSF Chimera program by author). 
 
The first crystal structure of CCR5 was determined bound with Maraviroc in 2013 (Tan et al., 

2013). The solved CCR5 structure served as the basis in a structure-based optimisation and 

design of novel 1‑Heteroaryl-1,3-propanediamine derivatives relying on the functional and 

binding properties of Maraviroc at CCR5 (Peng et al., 2018). Two of these novel compounds 

(Compound 21 and Compound 34) demonstrated their potential as candidate drugs as HIV 

entry inhibitors with improved anti-HIV-1 activity, and tolerable pharmacokinetic profile 

compared with Maraviroc (Peng et al., 2018). Additionally, the Structure of the full-length 

unmodified Structure of CCR5 in complex with gp120 and CD4 was solved, providing novel 

insights into CCR5 ligand recognition (Shaik et al., 2019). This structure showed that the V3 
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loop of gp120 overlaps with Maraviroc at CCR5 binding site demonstrating a direct 

competitive inhibition of gp120 binding by Maraviroc contrary to previous views of allosteric 

inhibition (Shaik et al., 2019).   

Table 2.4 Overview of the crystal structures of the solved chemokine receptor and their 
corresponding ligands. 
 

Chemokine receptors 

Receptor Species Ligand PDB code Technique Year Reference 

 
 
 

CCR5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Human 

Maraviroc (antagonist) 4MBS  

 

X-ray 

 

2013 (Tan et al., 2013) 

[5P7]CCL5 (antagonist) 5UIW 2017 (Zheng et al., 2017) 

Compound 21 (antagonist) 6AKX  

 

2018 

(Peng et al., 2018) 

 Compound 34 (antagonist) 6AKY 

HIV-1 envelope spike, 

Cd4 complex 

6MEO cryo-EM 

 

(Shaik et al., 2019) 

 6MET 

 
 
 

CCR2 

BMS-681 (orthosteric) & 

CCR2-RA-[R] (allosteric) 

antagonists 

 

5T1A 

 

 

 

 

 

 

X-ray 

 

2016 

 

(Zheng et al., 2016) 

MK-0812 (antagonist) 6GPS  

 

2019 

(Apel et al., 2019) 

 MK-0812 (antagonist) 6GPX 

CCR7 Cmp2105 (allosteric 

antagonist) 

6QZH (Jaeger et al., 2019) 

CCR9 Vercirnon (antagonist) 5LWE 2016 (Oswald et al., 2016) 

 
 
 
 

CXCR4 

CVX15 (antagonist) 3OE0  

 

2010 

 

 

(Wu et al., 2010) 

 

 

 

IT1t (antagonist) 

3OE9 

3OE8 

3OE6 

3ODU 

vMIP-II (antagonist) 4RWS 2015 (Qin et al., 2015) 

CXCR1 Ligand free 2LNL Solid-state 

NMR 

2012 (Park et al., 2012) 

 
 

US28 

CX3CL1 (agonist) 4XT1  

X-ray 

2015 

 

(Burg et al., 2015) 

 CX3CL1 (agonist) 4XT3 

Ligand free 5WB1 2018 

 

(Miles et al., 2018) 

 CX3CL1.35 (agonist) 5WB2 

cryo-EM = cryo-Electron Microscopy; X-ray = X-ray crystallography.  

Solid-state NMR = Solid-state Nuclear Magnetic Resonance 
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2.3.2 CC Chemokine receptors 5 (CCR5) in HIV Infection 

CCR5 is a member of the GPCR family of signal transducers and plays a significant function 

in the initial stages of HIV-1 infection as a functional coreceptor for HIV-1 viral entry (Tan et 

al., 2013). CCR5 constitutes of an extracellular N-terminus, a C-terminus, three extracellular 

loops (ECLs), three intracellular loops (ICLs), and seven transmembrane helices. The CCR5 

second extracellular loop (ECL2) and N-terminus are crucial for HIV interactions during viral 

entry. Compared to the viral coreceptor CXCR4 and receptor CD4, the CCR5 has an additional 

advantage as a cellular target since it is relatively redundant for normal immune function 

(Askew et al., 2016). CXCR4 and CD4 are involved in vital processes in immune function 

(Berger et al., 1999; Nagasawa et al., 1996) limiting their effectiveness as antiretroviral 

therapeutic targets. The critical role played by CCR5 in HIV-1 infection was demonstrated 

when the CCR5 gene (CCR5-Δ32) naturally occurring mutation conferred resistance to HIV-1 

infection (Allers et al., 2011). Additionally, individuals possessing heterozygous Δ32 more 

slowly progressed to AIDS than do homozygous individuals with the wild-type gene (Liu et 

al., 1996; Paxton et al., 1998). Also, the density levels of CCR5 on CD4+ T cells correlates 

positively with RNA viral loads (de Roda Husman et al., 1997) and when untreated progresses 

to AIDS (Reynes et al., 2000). CCR5 is essential in stabilising the conformational changes 

induced by CD4, which are competent for promoting fusion (Shaik et al., 2019).  

The infection of HIV into a new host requires entry into susceptible target cells. Viral entry 

into host cells is facilitated by the HIV envelope glycoproteins gp120 (receptor binding) and 

gp41 (fusion). The mechanism of HIV entry occurs in several steps (Figure 2.13). The initial 

stage of viral entry is the attachment of gp120 to the CD4 receptor. The binding to CD4 induces 

a conformational change exposing the binding pocket of the coreceptor (CCR5 or CXCR4) 

(Tran et al., 2012). The CD4 binding site and the V1 and V2 regions shift from the trimer 

centre, causing the central gp41 stalk and the V3 loop to be exposed (Liu et al., 2008). The 

gp120 bridging sheet and the V3 loop then attach to either CCR5 or CXCR4 coreceptor 

exposed binding pocket subject to the R5 or R4 virus, respectively. The coreceptor engagement 

induces a second conformational change that activates gp41 fusion into the host cell membrane 

(Cormier & Dragic, 2002; Wilen et al., 2012b). In detail, a pre-fusion intermediate is formed 

by gp41 whereby extended helices are formed by the N-terminal heptad repeat-1 (HR1) (light 

green) and the C-terminal heptad repeat-2 (HR2) (dark green) of gp41, with the fusion peptide 

(FP) (yellow) been inserted into the host cell membrane (Figure 2.13)(Chan & Kim, 1998; 

Falkenhagen & Joshi, 2018). When HR1 is inserted with HR2, the gp41 folds back on itself, 
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leading to the formation of a six-helix bundle. The viral and cellular membranes are brought 

together by this conformational change which causes viral membranes and cellular lipids to 

mix. After the creation of a fusion pore resulting from lipid mixing, the content of virions is 

released into the cytoplasm (Wilen et al., 2012a).  

 

Figure 2.13 A schematic diagram of HIV entry mechanism. The gp41 HR1, HR2, and FP are 
depicted in light green, dark green, and yellow, respectively (Image adapted from (Falkenhagen 
& Joshi, 2018)). 
 

2.3.3 Advances in drug discovery towards CCR5 in HIV therapy 

The validation of CCR5 as a promising drug target in HIV-1 treatment resulted in the 

development of several approaches to block HIV-1 interaction with CCR5 including covalently 

modified natural CCR5 ligands, small molecule antagonists, and monoclonal antibodies 

(mAbs) (Berro et al., 2011; Henrich & Kuritzkes, 2013). However, several small-molecule 

CCR5 antagonists have advanced to phase 2 or 3 clinical trials with many proving effective 

inhibition of HIV-1 replication (Figure 2.14). CCR5 small molecules have shown excellent in 

vitro synergy when combined with other CCR5 inhibitors (including CCR5 mAbs) to 
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significantly block HIV-1 entry (Ji et al., 2007; Westby et al., 2007; Lalezari et al., 2008; S 

Latinovic et al., 2016).   

Maraviroc (MVC) was the first CCR5 small-molecule antagonist to be approved and marketed 

as CCR5 HIV-1 entry inhibitor (FDA, 2007; Carter, 2013). The oral administration of 

Maraviroc has resulted in a substantial decrease in viral loads (Westby et al., 2007; Schlecht et 

al., 2008); however, the prescription of Maraviroc is limited due to identified factors such as 

its drug-drug interactions (especially when co-administrated with CYP3A4 inhibitors), 

CYP450 inhibition, and viral resistance (Garcia-Perez et al., 2015; Peng et al., 2018). The 

prodrug Fostemsavir (formerly BMS-663068/BMS-626529 and marketed as Rukobia) has 

emerged as the first-in-class HIV attachment inhibitor to be approved by the US FDA mainly 

for HIV positive patients with multidrug-resistant HIV-1 and intolerance or safety issues with 

other therapies (FDA, 2020). Fostemsavir binds to HIV envelope glycoprotein 120 (gp120) 

when hydrolysed to its active form temsavir, which prevents the conformational change needed 

by gp120 for attachment to CD4 cell surface receptor of the host (Lalezari et al., 2015; 

Thompson et al., 2017; Kozal et al., 2020).  

 
Figure 2.14 Representative approved drugs and clinical antagonists as HIV-1 entry inhibitors 
targeting CCR5 (Image prepared by author). 
 

Aplaviroc (APL) and Vicriviroc (VCV) were two promising CCR5 small molecule antagonist 

but were both discontinued for varied reasons. Aplaviroc showed a substantial decrease of 

plasma HIV-1 RNA copies when administered in the first ten days of treatment (Lalezari et al., 



32 
 

2005); however, development was discontinued due to reversible drug-induced hepatitis 

observed during phase II and III trials in five subjects (Nichols et al., 2008). Vicriviroc (VCV) 

also displayed substantial HIV-1 suppression but was terminated prior to phase II study due to 

increasing virologic failure rates when compared with the control group (Gulick et al., 2007; 

Landovitz et al., 2008; Schürmann et al., 2007; Caseiro et al., 2012). Cenicriviroc (CVC) is 

another small molecule under development for inhibiting CCR5 receptor in phase III trials 

(Klibanov et al., 2010). Cenicriviroc has a longer half-life compared to Maraviroc and shows 

a substantial decrease in plasma HIV-1 RNA load among HIV positive patients. Cenicriviroc 

further displayed favourable efficacy and safety in treating  HIV-1 naive infected patients and 

has made progress to phase III trials (Thompson et al., 2016). Additionally, INCB009471 is 

also CCR5 coreceptor investigational antagonist being developed as a selective HIV-1 entry 

inhibitor (Shin et al., 2011). INCB009471 showed limited adverse effect with no identified 

dose-limiting toxicity (Troy et al., 2007).  

Genome editing techniques such as the clustered regularly interspaced short palindromic 

repeats (CRISPR), the zinc-finger nucleases (ZFN), and CRISPR associated nuclease 9 

(CRISPR-Cas9) are emerging as an alternative approach in blocking CCR5 by deleting the 

CCR5 gene ex vivo. Recent results suggest that the concurrent gene modification of CXCR4 

and CCR5 by CRISPR-Cas9 protect CD4+ T cells from HIV-1 infection and holds the potential 

to provide a safe and effective functional cure for HIV-1 infection (Liu et al., 2017).  

Recent structure-based optimisation of the functional and binding properties of Maraviroc lead 

to the design of novel 1-Heteroaryl-1, 3-Propanediamine analogues (Peng et al., 2018). The 

compounds (Compound 21 and Compound 34) have proven to be potential drug candidates 

with improved anti-HIV-1 activity, and tolerable pharmacokinetic profile compared with 

Maraviroc (Peng et al., 2018). The binding of CCR5 inhibitors, including Maraviroc, Aplaviroc 

and Vicriviroc, have been considered as an allosteric inhibitor (Arts & Hazuda, 2012). 

However, the recent crystallisation of the full-length CCR5 in complex with gp120 V3 loop 

suggests that Maraviroc blocks gp120 binding to CCR5 via direct competitive inhibition in 

contrast to earlier views of noncompetitive allosteric inhibition through conformational 

availability restriction (Figure 2.12)  (Shaik et al., 2019). 
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CHAPTER 3 

Membrane-Protein Simulations and Computational Methods in Drug Discovery 

3.1 Introduction 

The traditional approach to drug discovery is costly, time consuming, and risky, and process 

based on multidisciplinary approaches in producing effective and safer medicines. 

Computational drug design and discovery, and biomolecular simulation techniques, are used 

widely in modern drug discovery, and to study drugs and bioactive compounds interactions 

with their biological targets. As powerful tools for the study of receptor-inhibitor interactions, 

structure-activity relationships (SAR) and conformational dynamics of complex molecular 

systems, pharmaceutical research has increasingly used modern medicinal chemistry methods, 

including computational and molecular modelling. Also, in silico predictions of 

physicochemical properties (e.g., molecular weight, polar surface area, solubility, hydrogen 

bond donor and acceptor, rotatable bonds etc.), and pharmacokinetic properties (absorption, 

distribution, metabolism, excretion and toxicity) have significantly contributed to the success 

rate of modern drug discovery.   

 

3.2 Molecular Mechanics (force fields) in Biomolecular Simulation of GPCRs 

The application of quantum mechanical (QM) approaches, though more accurate, remains 

suitable only for performing computations on small systems consisting of few atoms 

(Steinbrecher & Elstner, 2013). The investigation of the structure and dynamics of a 

biomolecular system of interest comes at an extremely high computational cost which cannot 

be handle with QM methods (Habgood et al., 2020; Steinbrecher & Elstner, 2013). On the other 

hand, the accuracy of QM and the speed (less expensive) of MM are combined by quantum 

mechanics/molecular mechanics (QM/MM) method (Saura et al., 2019). The QM/MM 

approach treats the inhibitor and few active site residues (where chemical process takes place) 

with QM level of theory and the remaining macromolecular system treated with Molecular 

Mechanics (MM) (Saura et al., 2019) (Figure 3.1).  

Molecular Mechanics (MM) are mathematical expressions that describe the potential energy 

of a system particle coordinates. MM methods (also called force field methods) utilises the 

Born-Oppenheimer approximation to estimate the energy of a system based only on the 

motions/positions while ignoring the degrees of freedom of electron (Monticelli & Tieleman, 

2013).  
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Figure 3.1 A QM/MM model for treating part of an enzyme with QM theory (ligand and few 
active site residues) and the remaining part of the macromolecular system with MM theory 
(Image adapted from https://bioexcel.eu/software/cp2k/).  
 
The realistic simulation of a biomolecular complex system largely depends on the availability 

of reliable and accurate force fields. Most classical force fields consist of five different terms 

describing a molecular system and are represented as the bonded (bond stretching, bending of 

angles and rotation of the dihedral/torsional angle) and nonbonded (electrostatics and Van der 

Waals) interactions (Monticelli & Tieleman, 2013) (Figure 3.2) 

 
A slight variation may exist in the force field terms of the available different MM packages, 

the force field terms of AMBER molecular dynamics package used in this thesis are described 

in Equation 3.1.  
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The first term of  equation 3.1 defines bond stretching based on Hooke’s law, and the energetic 

penalty for the bond stretching from its reference bond length  =& determine by force constant 

O5. Similarly, the second term defines angle bending based on Hooke’s law, and the energetic 

penalty for the distortion of the angle from its reference angle  q& determine by force constant 

kq. The third term also denotes the dihedral or torsion angle rotation signified by a dihedral 

angle ∅, a cosine series expansion with periodicity n, a barrier height V*, and an offset δ.  
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Figure 3.2 The bonded interactions and nonbonded interactions underlying molecular 
mechanics force field in the potential energy determination of a system (Image prepared by 
author). 
 

The fourth and fifth parameters consist of the nonbonded interactions terms – the van der Waals 

(vdWs) interactions depicted by a 6-12 Lennard-Jones potential and the electrostatic 

interactions by the Coulombic potential. Molecular dynamics force fields development has 

made a significant stride in the past decades to accurately describe proteins, nucleic acids, 

lipids, and small molecules (Nerenberg & Head-Gordon, 2018). 

   

3.2.1 Protein Force Fields 

The pairwise additive approximation underlies the existing all-atom fixed-charge protein force 

fields for biomolecular simulation (Demerdash et al., 2014). Earlier protein force fields such 

as OPLS-AA, AMBER ff94 and CHARMM22 were successfully employed in short peptide 

and globular protein simulations. However, deficiencies in these force fields such as their 

inability to simulate intrinsically disordered proteins (Henriques et al., 2015; Rauscher et al., 

2015; Levine & Shea, 2017), and incorrect identification of protein folding 

intermediates/pathways (McKiernan et al., 2017) were revealed by detailed experimental data. 

The backbone torsion potential modifications which were subsequently included in the Amber 

ff99SB (Hornak et al., 2006) and the CMAP backbone energy correction to CHARMM22 
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(Mackerell Jr et al., 2004) improved their accuracy compared with the previous versions as was 

demonstrated by comparing simulation results with experimental data (Best et al., 2008).  

The torsion potential that regulates both side-chain dihedral angles and backbone behaviour 

has been a common approach to improving protein force fields. The methods used to derive 

these potentials included matching structural database data or only experimental NMR as used 

in AMBER ff99sb*/ff03*/ff03w (Best & Hummer, 2009; Best & Mittal, 2010) and ff99sbnmr1 

(Li & Brüschweiler, 2010) or matching to only ab initio quantum chemistry data such as in 

AMBER ff14SBonlysc (Maier et al., 2015), AMBER ff99SB-ILDN (Lindorff‐Larsen et al., 

2010), AMBER-FB15 (Wang et al., 2017) and OPLS-AA/M (Robertson et al., 2015). 

However, the CHARMM 36 (Best, Zhu, et al., 2012; Best, Mittal, et al., 2012) and 

AMBERff14SB (Maier et al., 2015) utilised a combination of both data sources. 

 

3.2.2 Lipid Force Fields 

The all-atom lipid force field explicitly describes in detail all the atoms of a molecule. Some 

of the most frequently used lipid force fields include the AMBER Lipid11 (Skjevik et al., 

2012), AMBER Lipid14 (Dickson et al., 2014), and AMBER Lipid17 (Gould et al., 2018), the 

CHARMM36 (C36) (Klauda et al., 2010) and CHARMM36 united atom FF (C36-UA) (Lee et 

al., 2014), the OPLS OPLS-UA and OPLS-AA, the GROMOS (53A6-CPK) (Piggot et al., 

2012) and GROMOS54A7/54B7 (Schmid et al., 2011), and the MARTINI force field (Marrink 

et al., 2007). Loschwitz and colleagues have reviewed the detail applications of these force 

fields and other emerging force field. (Loschwitz et al., 2020). Before the specific parameter 

set for lipids in AMBER was introduced, AMBER force fields were rarely used in the 

simulation of membrane proteins (Jójárt & Martinek, 2007). The AMBER lipid force fields 

have been tested for lipids bilayers such as 1,2-dipalmitoyl-sn-glycero-3-phosphocholine 

(POPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphoethanolamine  (POPE), 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 

1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), and 1,2-dimyristoyl-d54-sn-glycero-3-

phosphocholine (DMPC) (Dickson et al., 2014).  
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3.2.3 Small Molecule Force Fields 

The application of force fields in parameterising small molecules has played an essential role 

in the simulation of both natural and synthetic inhibitors. Presently, the force fields widely used 

for small molecules are the General AMBER Force Field (GAFF/GAFF2) (Wang et al., 2004; 

Wang et al., 2006), the CHARMM General force field (CGenFF) (Vanommeslaeghe et al., 

2010; Vanommeslaeghe & MacKerell Jr, 2012; Vanommeslaeghe et al., 2012; Yu et al., 2012), 

GROMOS (Schuler et al., 2001; Oostenbrink et al., 2004; Horta et al., 2011; Horta et al., 2016), 

OPLS-All-Atom (OPLS-AA) (Jorgensen et al., 1996), OPLS3 (Harder et al., 2016), and the 

Merck Molecular Force Field (MMFF) (Halgren, 1996a; Halgren, 1996b; Halgren, 1996c; 

Halgren & Nachbar, 1996; Halgren, 1996d).  

The AMBER GAFF charges for small molecules are computed from the AM1-BCC  semi-

empirical model (Jakalian et al., 2000; Jakalian et al., 2002) or QM ab initio such as HF/6-

31G* RESP charge (Bayly et al., 1993) charge models are used in the AMBER GAFF. The 

recent reparameterisation of the Lennard-Jones and bonded parameters in the GAFF yielded 

the GAFF2. The default charge model of the OPLS3 is the CM1A-BCC or 1.14*CM1A-LBCC, 

which is similar to the GAFF AM1-BCC charge model (Dodda et al., 2015; Dodda et al., 2017). 

The CGenFF utilises a charge model known as the moiety-specific charge deviation protocol 

(Vanommeslaeghe et al., 2010). The GROMOS charge model is considerably different when 

compared to the above charge models as used in the most recent release known as the 2016H66 

(Horta et al., 2016).  

The above force fields for small molecules have frequently been improved and actively 

maintained to involve new parameters for a broader range of chemical entities. The program 

for generating the CGenFF parameters and CHARMM topologies is accessible via the 

ParamChem website (Vanommeslaeghe & MacKerell Jr, 2012; Vanommeslaeghe et al., 2012). 

The Antechamber module (Wang et al., 2006) was designed by the AMBER developers and is 

used to generate GAFF and AMBER topologies for MD simulations. Most of the existing force 

fields used in the parameterisation of small molecules depend on non-polarisable or additive 

force fields for empirical potential energy functions. The common characteristics shared 

between these force fields are their potential energy function and the energy function 

parameters.  
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3.3 Molecular dynamics simulations of biomolecules  

Molecular dynamics (MD) simulation has increasingly become an essential tool in providing 

deeper microscopic mechanistic insights into structure, function, and dynamics of biological 

molecules (Cournia et al., 2015; Torrens-Fontanals et al., 2020). Experimental methods, 

including nuclear magnetic resonance (NMR) spectroscopy, cryo-electron microscopy (cryo-

EM), and X-ray crystallography have often been used to provide atomistic insight into the 

interactions of protein receptors with lipids. However, the single and static protein 

conformation obtained from these experimental methods offers little information about the 

dynamics of macromolecules due to the highly dynamic nature of drug binding and molecular 

recognition of macromolecules (Torrens-Fontanals et al., 2020; Saurabh et al., 2020; X. Liu et 

al., 2018). Thus, MD simulation obtain extrapolated dynamical information the biomolecular 

structure such as proteins, and DNA.   

 

3.3.1 Principles of MD Simulations 

Molecular dynamics is a theoretical technique that depends on Newtonian mechanics. Solving 

Newton’s movement equations makes it possible to model the physical motions of atoms in a 

molecular system over time. The forces between the system’s potential energy and the particles 

are then measured using the MM force field (Monticelli & Tieleman, 2013). MD simulations 

generate dynamical trajectories of the interacting particles of a biomolecular structure over the 

desired time frame allowing the dynamics of interacting particles to be studied. Figure 3.3 

shows the basic MD algorithm simplified. 

 

3.3.1.1 Energy minimisation 

Poor interaction sometimes characterises the starting structure of biomolecules to be used in 

MD simulation. Large repulsive interaction, for example, may arise when two atoms are too 

close to each other. Thus, the energy minimisation of the starting structure is required to remove 

bad atom contacts before MD simulations. The three commonly used energy minimisation 

methods are the conjugate gradient (CG), the Limited-memory Broyden–Fletcher–Goldfarb–

Shanno (L-BFGS), and the steepest descent (SD) algorithm. The robust and efficient steepest 

descent algorithm is sufficient for most minimisation processes. The SD algorithm uses 

potential energy and forces in updating the positions of the atomic particles in an iterative 

manner and halts when it has iterated for the number of cycles specified by the user or when 

the specified value is larger than the maximum force. Compared with the steepest descent 

algorithm, the conjugate gradient is more efficient when the system is near the energy 
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minimum. The L-BFGS algorithm has been observed to have a faster convergence than the 

conjugate gradient algorithm and is more appropriate for alchemical free energy calculations. 

 

 

Figure 3.3 Simplified MD simulation algorithm. Where potential energy = Epot; time of 
iterations = dt; simulation time = t; For N simulated atoms of each spatial coordinates (i): atom 
coordinates = x; force component = F; a = acceleration, atom mass = m; and velocity = v (Image 
modified from (Hospital et al., 2015)). 
 

3.3.1.2 Integration Algorithm 

Integration methods used in MD simulation codes include the leap-frog algorithm, the Verlet 

algorithm, and velocity Verlet. The leap-frog algorithm is the often-used integration algorithm 

updating the position r and velocity v of a simulation particle by:  
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3.3.1.3 Regulation of Temperature and Pressure  

The regulation of pressure only applies when a system is simulated under constant pressure 

periodic boundary condition. A “barostat” or a “pressure bath” is utilised to regulate the 

pressure of the simulating system. Available pressure coupling algorithms include the 

Berendsen barostat which scales the atomic coordinates and box vector at every time step, the 

Monte Carlo barostat which rigorously samples from the isobaric-isothermal ensemble (NPT), 

and the Parrinello-Rahman barostat. 

Temperature coupling is applied under a constant temperature (NVT ensemble) MD 

simulation. The commonly used temperature regulation thermostats include the Berendsen 

thermostat (Berendsen et al., 1984), Andersen thermostat (Andersen, 1980), and the Nosé-

Hoover thermostat (Nosé, 1984; Hoover, 1985).  

 

3.3.1.4 Constraint algorithms 

Constraints are introduced to hold bonds in fixed length in classical MD simulation. The 

SHAKE algorithm approach has traditionally been used to apply constraints in numerous MD 

simulation codes (Ryckaert et al., 1977). Using a reference set, the SHAKE algorithm works 

by modifying a set of unconstrained coordinates to a new set that satisfies a list of distance 

constraints. The LINear Constraint Solver (LINCS) is another approach available besides the 

SHAKE algorithm (Hess et al., 1997). After an unconstrained update in a non-iterative fashion, 

the LINCS algorithm resets the bond lengths. 

 

3.3.1.5 Periodic Boundary Conditions 

Periodic boundary conditions (PBC) are used to minimise the interface with the vacuum of a 

finite molecular system in an MD simulation (Schultz, 1999). To measure short-range 

nonbonded interactions with other particles, PBC is often applied following the minimum 

image convention, which regulates that only the closest image of a particle is selected. Usually, 

for short-range interactions, a cut-off is set. Beyond the cut-off, long-range van der Waals 

interactions are typically ignored. In contrast, long-range electrostatic interactions are usually 

recovered using the Particle-Mesh-Ewald (PME) method (Darden et al., 1993). The system is 

first put into a box when using PBC, which is then copied to fill the entire space in every 

direction. The most frequently used box types include rhombic dodecahedrons, cubes, and 

truncated octahedrons. 
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3.3.2 System Setup and MD Simulations of GPCRs in Lipid Bilayer  

There are various computational approaches for membrane protein simulations which seek to 

provide a balance between accuracy and the size of the molecular system under investigation 

(Cui, 2014; Chavent et al., 2016). Generally, MD simulation studies begin with an experimental 

or homology modelled protein structure and simulated over time based on classical mechanics 

principle. However, the starting protein structures of membrane proteins are almost in all cases 

not available in their native lipid bilayer. Hence, presenting one of the most significant 

challenges in the construction and embedding of membrane proteins in lipid bilayer for use in 

MD simulation. This shortcoming gives an additional responsibility for appropriate modelling 

and insertion of the protein structure in a native lipid bilayer. Thus, membrane protein 

simulation in comparison to globular protein simulation system setup for simulation may be 

challenging especially for the novice.   

Biomolecular simulation software packages such as GROMACS and CHARMM have their 

membrane builder. The membrane builder for GROMACS and CHARMM are MemBuilder 

(Ghahremanpour et al., 2014) and CHARMM-GUI (Wu et al., 2014),  respectively. However, 

the AMBER MD package lacks its membrane builder and relies on external programs for 

embedding membrane proteins in a lipid bilayer. The Visual Molecular Dynamics (VMD) 

(Humphrey et al., 1996) package also has a plugin for setting up a simple membrane system. 

Other online servers packages such as PACKMOL (Martínez et al., 2009), MemProtMD 

(Newport et al., 2019) and PACKMOL-memgen (Schott-Verdugo & Gohlke, 2019) allows the 

user to build a membrane system to suit their system’s needs. Recently, Khanna and colleagues 

(Khanna, 2018) developed an “in-house” membrane builder code known as AMBAT-Amber 

Membrane Builder and Analysis Tool specifically for the AMBER MD simulation package and 

has been employed in a recent study (Toroz et al., 2019). However, AMBAT has not yet been 

integrated into the AMBER MD simulation package.  

Embedding a membrane protein in lipid bilayer using the CHARMM‐GUI Membrane Builder 

remote server arguable appears to be more user-friendly; nevertheless, the user will need to 

perform some modifications for residue and atom naming compatibility with AMBER MD 

package. The charmmlipid2amber.py introduced in AMBER, therefore, provides a vigorous 

atom and residue renaming of CHARMM-GUI PDB structure format into Leap and Lipid14 

PDB readable format. The CHARMM‐GUI Membrane Builder was initially used to embed the 

membrane proteins used in this thesis in a lipid bilayer, prepared with the 
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charmmlipid2amber.py and simulated with AMBER MD package. Figure 3.4 represents the 

general procedure for the initial system setup with CHARMM‐GUI.  

 

 

Figure 3.4 The systematic workflow in the overall embedding of membrane protein in a lipid 
bilayer with water molecules and ions using the CHARMM-GUI membrane-builder for 
AMBER MD simulation (Image modified by author from (Jo et al., 2008)). 
 

3.3.3 Molecular Dynamics Trajectory Analyses 

3.3.3.1 Atomic displacement analysis 

The average change in the displacement of selected atoms for a trajectory frame relative to a 

reference frame is measured using the root mean square deviation (RMSD). To test the 

convergence/stability of the MD simulation, RMSD is computed for all the trajectory frames. 

The RMSD computation for trajectory frame x is:   
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where a is the selected number of atoms, =2 	(S54C) denotes the average referenced position of 

an atomic particle =2 at referenced time S54C and =2@(SA)describes the position of specified atoms 

in the frame b recorded at the time SA after reference frame superposition. This calculation is 

repeated for each frame of the simulated trajectory.  

3.3.3.2 Residue positional mobility analysis 
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The root mean square fluctuation (RMSF) for specified atoms (e.g. Cα atoms) is a measure of 

atomic deviation between particle c position relative to a reference position: 

RMSF: =	^
1
T
			$(=2@(S) − =2 	(S54C))
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E
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																															DEFGHIJK	L. e 

where f is the specified trajectory time to computed for RMSF, =2 	(S54C) denotes the average 

referenced position of an atomic particle =2 at referenced time S54C and =2@(S) describes the 

position of a specified atom in residue i at time t after reference frame superposition. The 

RMSF is computed to observe the mobility/fluctuations of residues in the macromolecular 

system.  

 

3.3.3.3 Structural compactness analysis 

The radius of gyration (RoG or rGyr) which estimates the compactness of a molecular structure 

is computed as:  
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where W2 denotes the mass of atom i and =2 describes the position of atom i relative to the 

molecule’s centre of mass.  

 
3.3.3.4 Principal Component Analysis and Conformational Clustering 

 
Principal Component Analysis (PCA) is an advanced technique of trajectory analysis used to 

describe a given macromolecule’s collective motion. PCA is performed by constructing 

covariance matrix C: defined by an averaged MD trajectories ensemble as:  

C: =< (q:−< q: >)pq;−< q; >q > 		 (i, j = 1,2…… ,3N)																								DEFGHIJK	L. u                            

Where N signifies the number of C-α atom, v2 denoting the mass-weighted cartesian coordinate 

of the ith N atom.  

To construct the covariance matrix, the translation and rotation movements are initially 

excluded, which allows the 3N directions along which most of the protein motion to be 

identified. The covariance matrix is diagonalised to extracting a set of eigenvectors and 

eigenvalues. Using an orthogonal coordinate transformation matrix T, the diagonalisation is 

carried out which transforms the covariance matrix C into a diagonal matrix of the eigenvalues 

λi.: 
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Λ = TEC:;T																																																																						DEFGHIJK	L. x 

Extracting the essential principal modes provides insight into the conformational dynamics of 

biological molecules. The principal component analysis in the manuscript chapters that make 

up this thesis was computed with the Bio3D package in R (Grant et al., 2006). 

 

3.3.4 Estimation of binding free energies 

The application of computational approaches in binding free energy estimation has emerged as 

an essential tool in the drug design process (Pearlman & Charifson, 2001; Srivastava & Sastry, 

2012; Steinbrecher et al., 2017). These methods provide a guide in structure-based drug 

discovery and protein-ligand interaction analysis. Several of these computational approaches 

rely on molecular dynamics (MD), in providing a cost-effective conformational ensemble that 

is statistically relevant for the thermodynamic calculations. The most popular MD-based 

binding free energy methods include thermodynamic integration (TI) (Bhati et al., 2017), free 

energy perturbation (FEP) (Lenselink et al., 2016; Deflorian et al., 2020), linear interaction 

energy (LIE) (Rifai et al., 2018), and Molecular Mechanics Poisson–Boltzmann/Generalized 

Born Surface Area (MM-PB/GBSA) (Aldeghi et al., 2017; Miller III et al., 2012). However, 

the first two methods are quite computationally demanding/expensive, while the MM-

PB/GBSA approaches have been mainly used in virtual screening protocols due to their 

computational efficiency (Yau et al., 2020; Manhas et al., 2019). The AMBER MM-PB/GBSA 

calculations have successfully has been used to calculate the binding free energies in protein-

protein complexes (Contini et al., 2012), DNA-ligand complexes (Ferri et al., 2011), and 

protein-ligand complexes (Manhas et al., 2019). 

 

3.3.4.1 AMBER MM/PBSA.py for binding free energy calculation 

The MM/PBSA.py is an AMBER package program for end-point free energy estimation which 

uses the Molecular Mechanics Poisson–Boltzmann/Generalized Born Surface Area (MM-

PB/GBSA) methods (Miller III et al., 2012). For the prediction of binding affinity, the MM-

PB/GBSA-based approaches are commonly used as they provide an intermediate compromise 

of accuracy and speed between the more robust free energy perturbation techniques and the 

empirical scoring functions used in docking.  

MM/PBSA is more effective in computing absolute binding free energies, whereas MM/GBSA 

effectively computes relative binding energies. MM/GBSA is, therefore, the most appropriate 
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approach compared to MM/PBSA to be employed in the correct ranking of inhibitors (Hou et 

al., 2011).  

The estimation of binding free energy (ΔG) by MM/PBSA or MM/GBSA is represented by 

Figure 3.5 and the following equations: 

∆G(:*+ = GG)HI/0? − pGI%)F0:* + G/:.-*+q																																DEFGHIJK	L. { 

∆G(:*+ = ∆H − T∆S																																																																								DEFGHIJK	L. N} 

The individual free energy components of Equation 3.9 is obtained from the molecular 

mechanical energy (EJJ), entropy contribution (−T∆S), and solvation energy (G,)/) terms:  

∆H = ∆EJJ + ∆G,)/ − T∆S																																																						DEFGHIJK	L. NN 

The molecular mechanical energy term EJJ of the total enthalpy contribution is expressed as: 

∆EJJ = ∆E:*F0%*-/ + ∆EK+L + ∆E0/0																																					DEFGHIJK	L. NY 

Where the 	∆EJJ is comprised of the intramolecular energy term (∆E:*F0%*-/; involving the 

system’s dihedral, angle, and bond energies), the van der Waals interactions (∆EK+L), and the 

electrostatic energy (∆E0/0) in the gas phase. 

The free energy of solvation is described by G,)/ composing of the nonpolar ∆G*)*I)/-% and 

polar ∆GI)/-% solvation free energy terms:  

∆G,)/ = ∆GI)/-%(NO/QO) + ∆G*)*I)/-%																																					DEFGHIJK	L. NL 

The ∆GI)/-% term is generally calculated using either the Generalized Born (GB) model in 

MM/GBSA and the Poisson-Boltzmann (PB) model in MM/PBSA.  

The solvent-accessible surface area (SASA) method is used to calculate the nonpolar solvation 

energy component (G*)*I)/-%):  

	G*)*I)/-% = � ∗ (ÅÇÅ) + É																																																															DEFGHIJK	L. N` 

The É and � denote the offset and surface tension values, respectively. The conformational 

entropy (-T∆S) to the binding free energy is generally estimated by the AMBER normal mode 

analysis (nmode) program. 
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Figure 3.5 Schematic illustration of the thermodynamic cycle according to which free energy 
of binding is calculated. (Image adapted from (Walker, 2008)).  

 
The MM-PBSA/GBSA approaches have been documented to predict experimental binding free 

energies successfully for diverse biological systems. (Chéron & Shakhnovich, 2017; Rastelli 

et al., 2010; Ferrari et al., 2007; Bonnet & Bryce, 2005; Wang et al., 2001). However, the MM-

PBSA/GBSA approach has also been shown to produce substandard results in the prediction 

of binding free energies (Singh & Warshel, 2010; Kuhn et al., 2005; Pearlman, 2005). MM-

PBSA/GBSA performance in predicting binding affinity was recently evaluated and reported 

for 934 known inhibitors against the crystal structures of twenty class A GPCRs (Yau et al., 

2019). The authors concluded that MM-PBSA/GBSA performance in GPCR ligands binding 

free energy prediction is highly system-specific (Yau et al., 2019).  

 

3.4 Computational Drug Design and Discovery  

Drug design, discovery and development require laborious inter-disciplinary approach and are 

considered which. The application of computational drug design and discovery (CDDD) 

techniques in the drug design projects have assisted in expediting the process. The available 

computational methods in drug design and discovery can be categorized into structure-based 

drug design (SBDD), and ligand-based drug design (LBDD) methods. Figure 3.6 summaries 

the position of CDDD methods in the drug design process.  
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Figure 3.6 Computational drug design and discovery position in the drug discovery process 
(Image prepared by author). 
 

3.4.1 Structure-based drug design and discovery 

Structure-based drug design (SBDD) is a target-based computational method used to design or 

identify novel inhibitors which rely on the structural details of the biological target of interest 

(Batool et al., 2019). cryo-electron microscopy (cryo-EM), X-ray crystallography, and nuclear 

magnetic resonance (NMR) spectroscopy are experimental methods used to determine the 

three-dimensional (3D) structures of the macromolecules (Krishnan & Rupp, 2012; García-

Nafría & Tate, 2020). Homology/comparative models can be used based on the available 

structures of closely related proteins in the absence of an experimentally defined structure 

(Dong et al., 2013). SBDD is an efficient, more specific, and quick process for lead 

identification/discovery and lead optimisation since it utilises molecular level knowledge about 

the disease and the protein target structure (Lionta et al., 2014; Congreve & Marshall, 2010). 

The use of SBDD methods in academic research and the pharmaceutical industry has helped 

identify several FDA-approved medicines, including HIV-1 inhibitors (Wlodawer & 

Vondrasek, 1998) and the antibiotic norfloxacin (Rutenber & Stroud, 1996). 
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3.4.1.1 Structure-based virtual screening 

The in silico high throughput screening (HTS) technique known as structure-based virtual 

screening (SBVS) is a technique used to screen large chemical compound libraries or 

compound databases against a molecular target (Wang et al., 2020; Liu & Jockers, 2020). The 

process requires the protein target structure to predict the best binding interaction between the 

compounds and the target to form a complex. The ligands or compound libraries are then 

ranked based on their binding affinity to the target, with the highly promising compound 

displayed at the top of the list (S. Liu et al., 2018). Molecular docking is a well-known 

technique applied in SBVS as it is fast, less computationally expensive and achieves good 

results (Meng et al., 2011).  

 

3.4.1.2 Fragment-based drug discovery 

Fragment-based drug discovery (FBDD) is an effective target-based technique used to develop 

potent small-molecules with chemical fragments as starting points and optimised toward drug-

like leads. FBDD has become an attractive strategy in structure-based drug discovery with 

successes, even where other approaches failed for challenging targets (Erlanson et al., 2016; 

Murray et al., 2012). FBDD begins with the screening of very weak affinity low molecular 

weight compounds libraries (fragments) to identify “hits” against the target of interest. The 

identified hits are further optimised based on the target structural information to higher affinity 

small molecules using robust methods (Li, 2020; Erlanson et al., 2019).  

 

3.4.2 Ligand-based drug design 

Ligand-based drug design (LBDD) is a computational technique applied in the absence of a 

target 3D structural information. It depends on the knowledge of the molecules that bind to the 

biomolecular target of interest. The 3D quantitative structure-activity relationships (3D QSAR) 

and Ligand-based pharmacophore modelling are the most relevant and highly used methods in 

LBDD. These tools assist in lead identification and lead optimisation with appropriate 

predictive models (Acharya et al., 2011). 

 

3.4.3 Molecular docking 

Molecular docking is an extensively applicable computational technique in the process of 

structure-based drug design and discovery. Molecular docking is mostly used to predict the 

most favourable binding conformation and affinity of a ligand at the binding pocket of a 

macromolecular target (Fan et al., 2019) (Figure 3.7). The prediction of the binding modes and 
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the quantitative estimation of binding affinities through molecular docking protocols assist in 

the investigation of vital protein-ligand interactions. Which then assist in the analysis of the 

structure-activity relationship (SAR) for rational drug design and in the prioritising of 

compounds/drug-candidates that can be synthesised or experimentally tested.  

 

 

Figure 3.7 A schematic representation of the molecular docking of a ligand (green) into a 
protein target binding pocket (black) to produce a ligand-receptor complex (Image adapted 
from (Wikipedia, 2015)). 
 

The application of large drug-like compound libraries in virtual high-performance screening to 

obtain leads for further drug development is paramount for molecular docking. The molecular 

docking process can be divided into two separate stages: ligand conformational space search 

within the binding pocket and the binding affinity estimation for every predicted conformation 

(Shen, Ding, et al., 2020).  
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Table 3.1 Commonly used molecular docking software. 

Name * Search 
Algorithm 

Scoring 
Method 

Speed 
 

License Applicable Areas and 
Features 

AutoDock 
(Morris et 
al., 2009) 

GA, LGA Semi-
empirical 

free energy 
estimation 

Medium Free for 
academic 

use 

Flexible-rigid docking program. 
AutoDock is free academic 
software which works in 
combination with Autodock-
Tools.  

Autodock  
Vina 

(Trott & 
Olson, 
2010) 

GA Semi-
empirical 

free energy 
estimation 

Fast Open-
source 

Flexible-rigid docking program. 
AutoDock Vina employs a 
sophisticated local gradient 
optimisation procedure.  
It is accurate and faster than the 
AutoDock 4.  

Dock 
(Lang et 
al., 2009) 

FA Molecular 
mechanic 
force field 

Fast Free for 
academic 

use 

Flexible docking program. 
Applicable for flexible ligands 
and flexible receptor docking.  

Flex X 
(Kramer 

et al., 
1999) 

FA Semi-
empirical 

free energy 
estimation 

Fast Commercial Flexible-rigid docking.  
It uses incremental construction 
algorithms and is suitable for 
small molecule database virtual 
screening. 

Glide 
(Friesner 

et al., 
2004) 

ESS Semi-
empirical 

free energy 
estimation 

Medium Commercial A flexible program for docking. 
This software uses a knowledge 
base to decrease the search range. 
It has modes of extra accuracy 
(XP), standard accuracy (SP), ., 
and high throughput virtual 
display (HTVS). 

GOLD 
(Verdonk 

et al., 
2003) 

GA Semi-
empirical 

free energy 
estimation 

Fast Commercial Flexible GA-based docking 
program.  
The software’s reliability and 
accuracy have been highly 
appraised. 

LeDOCK 
(Shen, 

Wang, et 
al., 2020) 

GA, SA Molecular 
force field 

Fast Free for 
academic 

use 

A new flexible molecular docking 
software. Highly applicable for 
virtual high throughput screening 
due to its high accuracy and being 
fast (Shen, Wang, et al., 2020). 

RDOCK 
(Li et al., 

2003) 

GA, MC, MIN Molecular 
force field 

Medium Open-
source 

A rigid docking program. For 
refinement and scoring, it uses the 
CHARMm-based protocol. It is 
primarily designed to predict 
high-throughput virtual screening 
(HTVS) campaigns aside from 
predicting binding mode. 

ZDOCK 
(Chen et 
al., 2003) 

SC, FFT Molecular 
force field 

Medium  A rigid molecular docking 
program. It employs a novel 
scoring function that unites 
electrostatic and desolvation with 
pairwise shape complementarity 
(PSC). A webserver version 
available as ZDOCK server. 

*FA= Fragmentation algorithm; GA= Genetic Algorithm; LGA= Lamarckian Genetic Algorithm; 

ESS= Exhaustive systematic search; SA = Simulated annealing; MC = Monte Carlo; MIN = 

Simplex Minimization; FFT = Fast Fourier Transform algorithm, shape complementarity 
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3.4.3.1 Ligand Conformational Search 

Conformational search algorithms are utilised in molecular docking programs to search 

systematically for the orientations and conformations of a ligand at the binding pocket on a 

receptor target (Shen, Ding, et al., 2020). Thus, several poses of the ligand-receptor complexes 

are generated the conformation space search. Translational and Rotational degrees of freedom 

are used in the case of rigid docking. In contrast, a conformational degree of freedom is added 

to the ligands’ rotations and translations in a flexible docking protocol. (Maia et al., 2020).  

 

3.4.3.2 Binding Affinity Estimation 

Molecular docking programs employ different scoring functions to compute the molecular 

interaction force between a ligand and its molecular target. For each ligand-receptor complex 

conformation, a scoring function predicts the ligand-binding affinity at the receptor-binding 

pocket (Shen, Ding, et al., 2020). In modern docking programs, the molecular docking scoring 

functions used can be characterised as knowledge-based potential, physics-based methods (e.g. 

force-field or QM-based), descriptor-based scoring functions and empirical scoring functions 

(Liu & Wang, 2015). 

 
3.4.4 In silico physicochemical, and pharmacokinetic predictions 

In their safety and efficacy profiles, the absorption, delivery, metabolism, excretion, and 

toxicity (ADMET) properties of the prospective drug molecule are critical. However, it is time-

consuming and expensive to apply experimental methods that also require animal testing. Due 

to poor druggability, the disconnection between compound optimisation and ADMET 

assessments may sometimes lead to the dismissal of compound candidates, although they may 

have demonstrated excellent in vitro efficacy (Wang et al., 2015). The ability to early ascertain 

the druggability of candidate compounds improve drug development efficiency and 

productivity. The application of in silico physicochemical and ADMET profiling provides a 

cost-effective approach in prioritising the candidates. Thus, in silico ADMET profiling has 

emerged as a tool of choice in early drug discovery projects (Wang et al., 2015). The 

availability of high quality physicochemical and ADMET.predictive models provide avenues 

for the optimisation of druggability properties and compound efficacy (Huang et al., 2013). 

The application of these in silico models increase the probability of drug candidate success 

with reduced overall cost due to decreased attrition rate. The intelligent integration of in silico, 

in vivo, and in vitro ADMET data maximise the outcome of ADMET models in guiding drug 

discovery (Wang & Collis, 2011). Various in silico tools exist to predict pharmacokinetic 
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profiles and other molecular properties such as clogP, topological polar surface area (TPSA), 

drug score values, fragment-based drug-likeness, etc., of candidate molecules. A representative 

of these tools includes SWISSADME (Daina et al., 2017), pkCSM (Pires et al., 2015), and 

QikProp (Ioakimidis et al., 2008).  
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Abstract 

Dopamine receptors constitute a unique class of G-protein coupled receptors that mediate the 

activities of dopamine, a neurotransmitter implicated in diverse neurological diseases when 

dysregulated. Over the years, antipsychotic drugs have been primarily directed towards D2 

dopamine receptor (DRD2) while associable adverse effects have been centred on non-

selective targeting. The recent crystal structure of DRD2 in complex with atypical 

antipsychotic could further aid the structure-based design of highly DRD2-selective 

antipsychotics. Therefore, in this study, we comprehensively investigate the molecular 

recognition and differential binding landscapes of class-I and II DRD2 atypical antipsychotics, 

using membrane-bilayer molecular dynamics simulation and binding free energy techniques. 

Findings revealed that selected class-I antipsychotics exhibited binding dynamics and poses 

dissimilar to the class-II types with different interactive mechanisms at the binding cavity of 

DRD2. More interestingly, the class-II drugs established a highly coordinated binding at the 

DRD2 active site with a pertinent and recurrent involvement of Asp114 via strong hydrogen 

interactions. Furthermore, while these compounds exert distinct effects on DRD2 structure, 

findings revealed that the class-II types favourably engaged the deep hydrophobic pocket of 

DRD2 compared to the class-I drugs. We speculate that these findings will be fundamental to 

the discovery of highly selective DRD2 antipsychotics. 

 

Keywords: Atypical antipsychotics, D2 dopamine receptor, G-protein coupled receptor, 

Membrane-bound protein, lipid bilayer Molecular dynamics simulation. 
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1. Introduction 

G protein-coupled receptors (GPCRs) play an important role in the cell signalling process, 

particularly in response to neurotransmitters and hormones (Congreve & Marshall, 2010). 

Dopamine is an important neurotransmitter exerting its effect via the activation of the five 

dopamine receptors subtypes belonging to the GPCR family, namely; D1, D2, D3, D4, and D5 

(Kebabian & Calne, 1979). These receptors are further grouped into two main subfamilies, D1-

like (D1 and D5) and D2-like (D2, D3, and D4) receptors, based on their sequence and structural 

similarities (Fuxe et al., 2014). Generally, these class of receptors mediate cell proliferation, 

and differentiation, cyclic adenosine monophosphate release and neurotransmission of other 

neurotransmitters (Mishra et al., 2018). 

Amongst these subtypes, D2 dopamine receptor (DRD2) is an important GPCR drug target that 

mediates signal transduction of neurotransmitters in the central nervous system as well as in 

neurological processes such as memory, attention, emotion, pleasure, lust, and love 

(Greengard, 2001). The dysfunction of the dopaminergic system has been associated with 

various neurodegenerative disorders such as depression, Parkinson’s disease, attention deficit 

hyperactivity disorder, and schizophrenia. DRD2 has been the main target for atypical and 

typical antipsychotic drugs (Creese et al., 1976),(Meltzer et al., 1989) as well as drugs 

employed in the treatment of Parkinson disease. Unfortunately, many of these antipsychotic 

drugs targeting DRD2 are accompanied by a plethora of severe side effects, due to off-target 

interactions with other related targets (Roth et al., 2004),(Roth, 2007). 

The crystal structures of D4 dopamine receptor (DRD4) in complex with antipsychotic 

nemonapride (Wang et al., 2017) and D3 dopamine receptor (DRD3) in complex with 

eticlopride (Chien et al., 2010) have earlier been resolved. However, the lack of crystalised 

structures of the DRD2 ligand complexes over the past years impeded the molecular 

understanding of receptor function and ligand recognition. The recent crystallisation of the 

DRD2 in complex with the widely prescribed antipsychotic drug risperidone in 2018 provided 

novel insights (Wang et al., 2018) (Figure 1). Previous studies of DRD2 have been based on 

homology modelled structures using either DRD3 or DRD4 crystal structures as templates  

(Montgomery et al., 2018; Podder et al., 2016; Salmas et al., 2017).  
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Figure 1. Crystal structure of dopamine 2 receptor in complex with risperidone binding deep 
into the active site. Extracellular loops (ECL), intracellular loops (ICL), T4-Lysozyme (T4L) 
and risperidone are depicted in yellow, green, orange, and magenta, respectively (Image 
prepared by author).  
 

The solved crystal structure of DRD2 revealed an unexpected binding mode of risperidone 

which was contrary to findings from previous molecular docking studies that employed a non-

crystal homology model of DRD2 and used DRD3/DRD4 as structural templates (Duan et al., 

2015; Salmas et al., 2017). This approach failed to replicate the unique binding mode of 

risperidone as observed in the recent DRD2 crystal structure (Wang et al., 2018), which 

revealed that risperidone binds differently to DRD2. In the risperidone-DRD2 crystalised 

complex, the fluorobenzisoxazol ring orients deep in the hydrophobic cleft interacting with 

Trp386, Phe390, Phe382, Phe198, Ser197, Thr119 and Cys118 whereas the 

tetrahydropyridopyrimidinone ring interacts with residues Phe110, Thr412, Trp100, Tyr408 

and Val191 (Wang et al., 2018). Interestingly, in the recent crystal structure of serotonin 2A 

receptor (5-HT2AR) in complex with risperidone substantiates the observed binding mode in 

DRD2; the fluorobenzisoxazol ring of risperidone binds in the bottom of the hydrophobic cleft 

forming interactions with Trp336, Ile163, Phe340, Phe243, and Phe332 whereas the basic 

nitrogen of risperidone forms a salt bridge with the conserved residue Asp155 of  5-HT2AR 

(Kimura et al., 2019).  These, however, contradict the reported reversed binding mode of 

risperidone using DRD2 homology model (Duan et al., 2015; Salmas et al., 2017). Therefore, 
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the binding modes of related atypical antipsychotic DRD2-targeting drugs remain unclear, and 

to make significant advancements in the structure-based design of these class of drugs. There 

is a need to identify definite binding modes and mechanisms for risperidone and related 

atypical antipsychotics at the binding cavity of DRD2. 

Understanding the binding modes and activation mechanisms of atypical antipsychotics at the 

binding cavity of DRD2 may assist in the rational-based drug design of highly selective drugs 

with minimal off-target tendencies. To further clarify the binding mechanisms of DRD2 

antagonists, we performed a comparative study of six (6) well known DRD2 atypical 

antipsychotic drugs to elucidate the mechanisms of ligand recognition, binding theme and 

conformational changes induced by these antipsychotics. The present study utilised molecular 

docking, explicit membrane-bound protein lipid bilayer molecular dynamics simulation, 

protein-ligand interaction fingerprint and binding energy analyses approach. Findings from this 

study will provide a further understanding of DRD2 ligand recognition and to guide future 

development of novel DRD2 selective as well as safer antagonists. 

 

2. Computational Methods 

2.1 Ligand structure preparations 

The 2D structures of DRD2 antagonists; aripiprazole (ZINC01851149), clozapine 

(ZINC19796155), olanzapine (ZINC52957434), quetiapine (ZINC19632628), ziprasidone 

(ZINC00538550) and risperidone (ZINC00538312)  were downloaded from the ZINC database 

for molecular docking (Irwin et al., 2012). Risperidone was also extracted from the dopamine 

crystalised structure (PDB ID: 6CM4) (Wang et al., 2018) from the Protein Data Bank 

(http://www.rcsb.org/) for the simulation. The retrieved compounds were prepared and 

minimised at physiological pH (7.4) using LigPrep module of Schrodinger suite software 

(Schrödinger, 2015). Figure 2 shows the 2D structures of the compounds employed in this 

study. 

 

2.2 Molecular Docking Analysis 

Molecular docking experiment was performed using Autodock Vina software package (Trott 

& Olson, 2010). The software’s default settings were used to rank the ligand conformation 

based on their predicted binding affinities during the docking experiments. Molecular docking 

was performed following receptor grid generation around the protein active site residues. The 

grid box was defined around the crystallised bound ligand (risperidone) active site residues. 

The grid box’s X, Y and Z dimensions were defined as 17.4531, 16.8919, and 19.9398 
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respectively whereas the X, Y, and Z centres were defined by 9.69473, 5.99816, and -8.89723 

respectively. Polar hydrogens and Gasteiger charge were assigned for all compounds. The best 

docking pose was output based on the best binding score. The 2D structures of risperidone and 

the related antipsychotics used in this study were docked to the crystal structure using the same 

grid box. The docked complex structures were visualised by the UCSF chimera (Pettersen et 

al., 2004) graphical user interface, and Molecular interactions were also visualised using 

Molegro Molecular Viewer (MMV) software program (http:www.clcbio.com). 

 
Figure 2. 2D structures of dopamine 2 receptor atypical antipsychotic drugs employed in the 
molecular dynamics simulations (Image prepared by author).  
 

2.3 Protein-Membrane System Setup 

The initial coordinates of the protein were taken from the Protein Data Bank (PDB ID: 6cm4) 

(Wang et al., 2018). The protonation state of the protein was determined using PROPKA 

(Dolinsky et al., 2007) at a 7.4 physiological pH. Missing loops were modelled using Modeller 

9.19 (Webb & Sali, 2014) plugins in chimera software. The T4-Lysozyme (T4L) residues 

(Val223-Arg361) fused in the ICL3 were deleted and the exposed residues Arg222 and Lys362 

capped. The protein-membrane bilayer and all the ligand-protein-membrane bilayers were 

assembled using the membrane builder module at the CHARMM-GUI website 

(http://www.charmm-gui.org/). The protein-membrane and the ligand-protein-membrane 

systems were aligned in dipalmitoylphosphatidylcholine (DPPC) lipid bilayer with knowledge 

of the protein orientation in the bilayer obtained from the Orientation of Protein Membranes 

(OPM) database (Lomize et al., 2006).  The complex systems were solvated with TIP3P water 
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molecules (Jorgensen et al., 1983) and neutralised with KCl counterions at a concentration of 

0.15M (Figure 3). The dimensions of the final simulated systems approximately measured 75 

x 75 x 100 Å3 and approximately contained 150 DPPC lipid molecules, 26 potassium ions (K+), 

37 chloride ions (Cl-), and 10,000 TIP3P water molecules.  

 

 

Figure 3. D2 dopamine receptor (purple) in complex with atypical antagonist risperidone (red) 
embedded in DPPC lipid bilayer (cyan) (Image prepared by author). 
 

2.4 Molecular Dynamic (MD) Simulations  

The AMBER18 package (Case et al., 2018) was used to perform all MD simulations. The 

solvated complex systems were used as the starting structures for the MD simulations. The 

charmmlipid2amber.py program in AmberTools 18 was used to convert the CHARMM lipid 

residue names to Amber format. The general Amber force field (GAFF) (Sprenger et al., 2015), 

Amber force field ff14B (Maier et al., 2015) and the Lipid14 (Dickson et al., 2014) force field 

were employed for the ligands, protein, and lipid molecules parameterisation, respectively. K+ 

and Cl ions were parameterised using the Joung-Cheatham TIP3P ion parameters (Joung & 

Cheatham III, 2008). The RESP model (Bayly et al., 1993) was used to derive the partial atomic 

charges of the ligands and electrostatic potentials generated at the HF/6–31G* level in the 
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GAUSSIAN 16 software package. The critical Cys182 and Cys107 disulfide bond were 

maintained during the simulations.  

All simulations were performed on Amber18 using the Particle Mesh Ewald Molecular 

Dynamics (PMEMD) program. The prepared systems were energy minimised and equilibrated 

as follow:  Energy minimisation of 10000 steps by hybrid methods of 5000 steps of steepest 

descent and remaining of conjugate gradient algorithm to relax the systems to remove any 

possible steric clashes.  Individual systems were heated from 0 K to 100 K in isothermal-

isochoric (NVT) ensemble using the Langevin thermostat (Larini et al., 2007) for 12.5 ps 

applying a 10.0 kcal mol−1 Å−2 harmonic restraint on non-hydrogen atoms of protein, ligand, 

and lipid with a collision frequency of 1.0 ps-1. Each system was further heated from 100 K to 

310 K for 125 ps with anisotropic pressure scaling and a pressure of 1 bar in isothermal-isobaric 

(NPT) ensemble. Equilibration was further performed for a total of 10 ns at 310 K in NPT 

ensemble.  A 2fs time step was used for heating and equilibration runs. Long-range electrostatic 

interactions were handled by particle mesh Ewald (PME) (Darden et al., 1999) algorithm, and 

non-bonded interactions were cut off at 10.0 Å. Covalent bonds involving hydrogen and heavy 

atoms were constrained with the SHAKE algorithm (Miyamoto & Kollman, 1992).  Finally, a 

200ns production run was carried out for each system at 310K and 1 bar in NPT ensembles 

without any restraint at a time step of 2fs and a cut-off of 10Å. Simulation snapshots were 

saved every 1ps.  

 

2.5 Post-MD Trajectories Analysis  

Prior to the analysis of trajectories, water molecules, counter ions and DPPC lipid molecules 

were stripped from the trajectories. The CPPTRAJ module (Roe & Cheatham, 2013) of 

AMBER18 was used to perform the analysis of the trajectories. Figures were prepared using 

UCSF Chimera (Pettersen et al., 2004). 

 

2.6 MM-GBSA Binding Free Energy Analysis 

The estimation of binding free energy for atypical antipsychotic was obtained from the stable 

MD trajectories using MM-GBSA method implemented in Amber18 package (Case et al., 

2018). 4000 snapshots were evenly extracted over the 200 ns of the MD trajectories at an 

interval of 50ps. Prior to MM-GBSA calculations, all water molecules, counterions, and lipids 

were stripped. Conceptual summary of the MM-GBSA method can be found in our previous 

paper (Appiah-Kubi & Soliman, 2016).  
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2.7 Residue interaction energy analysis 

The energy contribution of the active site residues to the overall binding energy of the studied 

antipsychotics was also decomposed from their total binding energies.   

 

3. Results and Discussion 

3.1 Binding poses of atypical drugs to DRD2 

Molecular docking analysis was performed to predict the binding poses and affinities of 

aripiprazole, clozapine, olanzapine, quetiapine, risperidone, and ziprasidone (Figure 2 & 4) at 

the binding site of the crystalised D2 dopamine receptor. Auto Dock Vina (Trott & Olson, 

2010), a molecular docking tool has successfully been employed in finding the appropriate 

binding poses/modes and affinities of ligand molecules inside the binding/active site of proteins 

(Nisha et al., 2016; Kumar et al., 2018; Seyedi et al., 2016). Prior to the docking of related 

atypical antipsychotics, the downloaded risperidone structure (ZINC00538312) from the ZINC 

database was initially docked into the DRD2 receptor (Figure 4b).   

 

Figure 4. Binding poses of (A) class-I atypical antipsychotics and (B) class-II atypical 
antipsychotics docked to DRD2 receptor binding site. Docked risperidone (ZINC00538312; 
magenta) superimposed over the crystallographic risperidone pose (PDB ID: 6CM4; green) in 
DRD2 receptor. The observed RMSD difference was 0.07 Å. Interacting residues were similar 
for both poses (Image prepared by author). 
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The docked risperidone complex reproduced the vital contact residues in DRD2 binding site in 

reference to the Protein Data Bank crystal structure complex (Figure 4b). Thus, the co-

crystalised risperidone DRD2 complex was used in the MD simulation.  The docked poses of 

each of the studied antagonists were ranked based on their binding scores in the active site and 

results shown in Table 1. The docking results showed that the binding pose of class-I 

antipsychotics was different from those of class-II (Figure 4). The extended chemical structures 

of class-II atypical antipsychotics bind deeper into the hydrophobic pocket whereas the bulky 

class-I atypical antipsychotics bind within the orthosteric and extended binding pocket.  
 

Table 1. Comparison of binding affinities and interacting amino acid residues of atypical 
antagonists against dopamine 2 receptor upon molecular docking.  

Bolded residues are those forming important H-bonds; * represents class I atypical antipsychotics;    

** represents class I atypical antipsychotics. 

 

3.2 Dynamic interaction patterns of atypical DRD2 antipsychotics 

To obtain ensemble insights into the complementary associations between atypical 

antipsychotics and DRD2, the binding mechanisms of the complex systems were evaluated 

using molecular dynamics (MD) simulations in explicit lipid bilayer. 

To effectively determine the global stability of protein-ligand interactions, the root mean square 

deviation (RMSD) of Cα atoms with respect to the starting structures were determined.  Figure 

 

Compounds 

Docking 

Score 

(kcal/mol) 

 

  Interacting residues within 4Å 

 

*Clozapine 

 

-8.50 

Leu94, Trp100, Cys107, Glu181, Cys182, Ile184, Phe110, Phe136, 

Tyr408, Thr412, Phe186, Ser193, His393, Phe389, Trp386, Pro405, 

Tyr417, Asn396, Asn402.  

 

*Olanzapine 

 

-8.40 

Leu94, Trp100, Phe110, Tyr416, Ile184, Asp114, Phe189, Val111, 

Val115, Ser193, Val190, Phe390, His393, Phe389, Asn396, Pro405, 

Tyr408, Ser409, Thr412. 

 

*Quetiapine 

 

-8.60 

Trp100, Phe102, Arg104, Cys107, Val111, Cys182, Trp134, Glu181, 

Ile184, Ala185, Ser197, Phe390, Trp386, Phe389, Thr412, His393, 

Tyr408, Pro405. 

 

**Aripiprazole 

 

-10.40 

Trp100, Lys101, Phe110, Asp114, Val115, Cys118, Thr119, Ile122, 

Ile184, Ala185, Phe189, Ser193, Ser197, Trp386, Phe389, Phe390, 

His393, Pro405, Tyr408, Thr412, Trp413. 

 

**Risperidone 

 

-12.20 

Ser409, Tyr408, Thr412, Phe389, Trp386, Phe390, Phe198, Phe382, 

Ile383, Ile122, Ser197, Thr119, Cys118, Val115, Ser193, Phe189, 

Asp114, Tyr416, Trp100, Val91, Leu94, Ile184, His414, Phe110.  

 

**Ziprasidone 

 

-10.70 

Leu94, Val91, Trp100, Ile184, Val190, Asp114, Tyr416, Phe189, 

Cys118, Val115, Ser193, Ser194, Ser197, Phe390, His393, Trp386, 

Phe389, Thr412, Trp413, Thr119, Pro405, Val406, Tyr408. 



83 
 

5a and 5b depict the average RMSD of the Cα atoms for atypical-receptor complexes over the 

entire 200ns MD simulations. In general, all complexed systems achieved conformational 

stability after 40ns simulations. The average apo and ligand-complex system RMSD values 

were 2.29Å (Apo), 1.95Å (clozapine), 1.93Å (quetiapine), 1.99 Å (olanzapine), 2.04Å 

(aripiprazole), 2.28Å (risperidone) and 1.82Å (ziprasidone). The ziprasidone-DRD2 complex 

relatively represents the most stable conformer. The above RMSD values seem to suggest that 

the DRD2 protein structure is less stable without inhibitor than with inhibitor. The relative 

dynamic stability of class-I and class-II atypical antagonists was also calculated to effectively 

assess the stability of these inhibitors at DRD2 binding pocket (Figure 5c & 5d). The observed 

averaged RMSD of the inhibitors was 0.92 Å, 1.69 Å, 0.91 Å, 1.98 Å, 1.06 Å, and 1.32 Å for 

clozapine, quetiapine, olanzapine, aripiprazole, risperidone, and ziprasidone, respectively.  

 

Figure 5. Conformational stability of protein-atypical drug complexes. The Cα RMSD of 
(a) atypical class-I drug-receptor complexes, (b) atypical class-II drug-receptor complexes, (c) 
atypical class-I drugs only and (d) atypical class-II drugs only relative to the starting minimised 
over 200ns (Image prepared by author).  
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To determine the regions of the protein exhibiting higher structural flexibility, the average root 

mean square fluctuations (RMSF) per residue of Cα atoms were determined (Fig 6a & 6b).  

Relatively, minimal alterations were observed at the transmembrane (TM) domain regions of 

the unbound (apo) and ligand-bound compared to the loops regions where a considerable 

degree of residue fluctuations was observed as shown in Figure 6a & b. The difference in 

RMSF values was also identified for class-I and class-II inhibitors for ECL1 and ECL2 

residues. Risperidone and aripiprazole bound systems showed higher residue flexibility in the 

ECL2 compared with clozapine, olanzapine and quetiapine bound systems suggesting that the 

interactions of these different classes of inhibitors with DRD2 produced different restrictions 

on the motions of these residues. The above-observed differences in RMSF values may suggest 

the changes in interaction intensities and internal dynamics.  

 

To obtain insights into the different degrees of solvent accessibility, the hydrophobic regions 

of DRD2 in complex with class-I and class-II atypical antipsychotics were observed and 

compared over the 200 ns simulations (Figure 6c & 6d). The mean solvent accessible surface 

area (SASA) values for class-I antipsychotics were 16162.34 Å2, 16188.13 Å2, and 16211.95 

Å2 for clozapine, quetiapine, and olanzapine respectively compared with 16365.43 Å2, 

16568.53 Å2 and 16800.84 Å2 for class-II antipsychotics aripiprazole, ziprasidone, and 

risperidone, respectively. Evidently, the binding poses of class-II antipsychotics engage deeper 

into the hydrophobic pockets which may explain their relatively larger volume of solvent 

accessible surface area compared to class-I antipsychotics. 
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Figure 6. RMSF plot of Cα atoms in DRD2 systems for (a) class-I atypical and (b) class-II 
atypical over 200 ns of simulation. Solvent accessible surface area (SASA) for (c) class-I 
atypical and (d) class-II atypical over 200 ns of simulation (Image prepared by author). 
 

3.3 Analysis of binding free energy interaction. 

To further dissect contributions to the protein-inhibitor binding, the molecular mechanics-

generalised born surface area (MM-GBSA) method was employed to predict the binding free 

energy of atypical antipsychotics to DRD2 using snapshots from stabilised MD trajectories 

(Table 2). The predicted binding free energies for class-I atypical antipsychotics were -37.22 

± 0.06, -34.21 ± 0.09, and -34.05 ± 0.09 kcal/mol respectively for olanzapine, clozapine and 

quetiapine (Ki values of 30.75, 147.0 and 437.0 nM, respectively). In class-II atypical 

antipsychotics, the predicted binding free energies were -49.87 ± 0.09, -49.27 ± 0.06, and -

37.18 ± 0.08 kcal/mol respectively for aripiprazole, risperidone, and ziprasidone (Ki values of 

2.30, 3.70, and 4.75 nM, respectively). The above binding energy rankings provide a good 

correlation with the experimental binding affinities compared to the previously reported 

rankings by Salmas et al. (Salmas et al., 2017) using the modelled DRD2 structure. From the 
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energy components of the total binding free energies, the van der Waals energy term (ΔEvdW) 

favoured the binding of both atypical class-I and class-II antipsychotics, with class-II drugs 

depicting higher van der Waals interaction energies compared to class-I drugs. Polar solvation 

energy term (ΔEpolar) was also observed to favour the association of all inhibitors to DRD2 

except quetiapine. Electrostatic interactions (ΔEelec) were also observed to provide 

unfavourable force to all inhibitors except for quetiapine. Furthermore, non-polar solvation 

energy (ΔEnonpolar) was noted to be less strong than van der Waals interactions. Hence, it can 

be concluded that the van der Waals interaction energy term mainly controls the binding of 

atypical antipsychotic drugs to DRD2 receptor.  

 

Table 2: MMGB/SA binding free energy components for DRD2–Antagonist complexes 
(expressed in kcal/mol with standard error of mean [SEM] ) and their respective experimental 
binding affinity in nM (Stahl, 2017).  

Atypical Class I Drugs 

Ligand ΔEMM ΔEsolv ΔEvdW ΔEelec ΔEpolar ΔEnonpolar ΔEbind ±SEM Exp(Ki) 

Olanzapine -18.23 -18.98 -39.47 21.24 -14.51 -4.47 -37.22 ± 0.06 30.75 
Clozapine -12.78 -21.43 -36.26 23.48 -17.50 -3.93 -34.21 ± 0.09 147.0 
Quetiapine -52.06 18.01 -35.79 -16.27 22.49 -4.48 -34.05 ± 0.09 437.0 

Atypical Class II Drugs 

Ligand ΔEMM ΔEsolv ΔEvdW ΔEelec ΔEpolar ΔEnonpolar ΔEbind Exp(Ki) 

Aripiprazole  -18.78 -31.09 -54.89 36.11 -24.57                 -6.53 -49.87 ± 0.09 2.30 

Risperidone 59.83 -109.1 -53.86 113.7 -102.8 -6.29 -49.27 ± 0.06 3.70 
Ziprasidone -11.95 -25.22 -44.44 32.49 -20.11 -5.11 -37.18 ± 0.08 4.75 

ΔEele, electrostatic energy; ΔEvdw, van der Waals energy; ΔEpolar, polar solvation energy; ΔEnonpolar, nonpolar 
solvation energy; ΔEsolv, total solvation energy term.  
All the energies were averaged over 4000 snapshots at time intervals of 50 ps from the entire 200 ns MD 
simulations and are expressed in kcal/mol. 
 
 
3.4 Hydrogen bond interaction analysis 

To further identify interactions responsible for ligand recognition and conformational stability, 

hydrogen bond analysis was performed to identify and characterise the stability of specific 

drug-receptor hydrogen bonds over the course of the MD simulations. The key interactions 

observed between atypical antipsychotics and D2 dopamine receptor are shown in Table 3 and 

Figure 8 & 9.  
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Table 3. Hydrogen bond occupancy of antagonists in complex with DRD2 during molecular 
dynamics simulations. 

Ligands H-Acceptor H-Donor aOccupancy 
(%) 

Distance 
(Å) 

Risperidone Asp114-OD2 
Thr412-OG1 

Inhibitor-N06-H06 
Inhibitor-O23-H23 

9.02 
1.27 

2.85 
2.73 

Aripiprazole Inhibitor-O1 Asp114-OD2-HD2 71.88 2.76 
 

Ziprasidone 

Asp114-OD1 
Inhibitor-O1 
Inhibitor-O1 

Inhibitor-N3-H1 
Ser193-OG-HG 

Asn396-ND2-HD22 

15.38 
2.59 
1.62 

2.84 
2.76 
2.86 

Clozapine Asn396-OD1 
Asn402-OD1 

Inhibitor-N4-H2 
Inhibitor-N4-H2 

30.33 
14.44 

2.77 
2.77 

 

Quetiapine 

Glu181-OE2 
Glu181-OE2 
Glu181-OE1 
Glu181-OE1 

Inhibitor-N3-HN 
Inhibitor-O2-H1 
Inhibitor-N3-HN 
Inhibitor-O2-H1 

35.04 
28.96 
19.37 
12.61 

2.77 
2.72 
2.77 
2.71 

Olanzapine Thr412-OG1 Inhibitor-N1-H2 48.36 2.89 
a Occupancy is the percentage of time of the existence of hydrogen bonding over the 200ns simulation time. 
 

From the obtained results it can be observed that all atypical class-II antipsychotics formed 

hydrogen bonds with Asp114. In the risperidone-DRD2 complex, hydrogen bond occurred 

between Asp114 and the tertiary amine of the piperidine ring in risperidone at a 9% occupancy 

and 2.85 Å distance. This hydrogen bond/salt-bridge was observed in the co-crystalised 

structure of risperidone (Wang et al., 2018).  Additionally, a weaker hydrogen bond not 

observed in the co-crystalised structure occurred between Thr412 and the oxygen atom in the 

tetrahydropyridopyrimidinone moiety of risperidone with a 1.27% occupancy. In the 

aripiprazole complex, a stronger and stable hydrogen bond is formed between its butoxy 

oxygen and the hydroxyl of Asp114 with a 71.88% occupancy. The dihydro-indol-2-one 

moiety of ziprasidone also forms a hydrogen bond with Asp114 at a 15.38% occupancy. 

Additional, ziprasidone forms less stable hydrogen bonds with Ser193 (2.59 % occupancy) and 

Asn396 (1.62 % occupancy).  

In the quetiapine-DRD2 complex, Glu181 was observed to form multiple stable hydrogen 

bonds with quetiapine between 12 - 35% occupancy, whereas a weaker hydrogen bond was 

also observed to be formed with Phe102 at a 2.6% occupancy. Also, clozapine was observed 

to form hydrogen bonds with Asn396 and Asn402 with a percentage occupancy of 30.33% and 

14.44%, respectively. For olanzapine-DRD2 complex, the thieno-benzodiazepine group 

interacted with Thr412 via a stable hydrogen bond with a 48% occupancy.  
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The observed differences in the formation of hydrogen bond by class-I and class-II atypical 

antipsychotics reflect their distinctive binding mode and interaction pattern in the DRD2 crystal 

structure.  

 

3.5 Residue interaction energy analysis 

To identify key residues that make important intermolecular interaction contribution to the 

binding of atypical antipsychotics, the total binding energy of each inhibitor was decomposed 

to obtain the energy contribution of active site residues. This decomposition was performed at 

the atomic level for the overall atoms of each residue to obtain individual residue contribution 

to inhibitor binding. The van der Waals energy, electrostatic interaction energy and the total 

energy of residues with high energy contribution are presented in Figure 7. The binding mode 

of the two classes of atypical antipsychotics and important residues are also shown in Figure 8 

& 9.  

In the class-I atypical drug-receptor interactions, all three drugs strongly interacted commonly 

with two residues, namely Ile184 and Tyr408 with energy values between -0.75 and -3.768 

kcal/mol. Olanzapine and quetiapine shared similar interactions with Trp100 and Val111, 

olanzapine and clozapine both interacted with Phe110 and Pro405, whereas clozapine and 

quetiapine made interactions Cys182 and Ala185. In the class-II drug-receptor interactions, 

residues Trp100, Phe389 and Tyr408 commonly interacted with all three drugs with energy 

values ranging from -0.512 to -2.882 kcal/mol. Aripiprazole and risperidone interacted with 

six similar additional residues including, Asp114, Cys118, Thr119, Trp386, Phe390, and 

Thr412 with energy values between -0.557 and -2.347 kcal/mol. These additional interactions 

pattern shared between aripiprazole and risperidone but not ziprasidone seems to suggest a 

similar binding mechanism exists in risperidone and aripiprazole toward DRD2 receptor.  

Class-II antipsychotics generally interacted with residues within the deep hydrophobic binding 

pocket characterised by Cys118, Thr119, Ser197, Phe198, Phe382, Phe390, and Trp386 with 

stronger and similar residue interaction pattern observed for aripiprazole and risperidone. 

Overall, the residue interaction energy analysis further clarifies the difference in binding mode 

and residue interactions pattern of class-I and class-II atypical antipsychotics in DRD2.  
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Figure 7. Per-residue binding free energy decomposition of (a) aripiprazole (b) risperidone 
(c) ziprasidone (d) clozapine (e) olanzapine and (f) quetiapine to DRD2 receptor (Image 
prepared by author).  
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3.6 The binding mode and interaction analysis of atypical antipsychotics 

To probe the binding mode and interactions pattern of atypical antipsychotics in the crystal 

structure of the DRD2 receptor, these drugs were first docked into DRD2 binding pocket 

followed by an all-atom membrane MD simulation. The protein-ligand interaction profiler 

(PLIP) software (Salentin et al., 2015) and the Discovery Studio protein-ligand interaction 

module (Accelrys, 2013) were used to perform drug-receptor interaction fingerprint analysis 

to identify non-covalent interactions such as hydrophobic contacts, hydrogen bonding, pi-

stacking, salt bridges, and pi-cation interactions.  

In the predicted binding mode and interactions of olanzapine using the x-ray structure (Figure 

8c & 9c), the protonated nitrogen atom of the thieno-benzodiazepine moiety forms a stable 

hydrogen bond with Thr412. Olanzapine is predicted to bind in the orthosteric and the extended 

binding pocket interacting with a cluster of aromatic and hydrophobic residues such as Val91, 

Leu94, Ile184, Trp100, Phe389 and Phe110. Additionally, olanzapine interacts with Phe389 

and Tyr408 via pi-sulphur and pi-cation interactions, respectively. The residue energy 

interaction shows residues that are critical to the binding of olanzapine, these residues include 

Tyr408, Thr412, Ile184, Trp100, Leu94, Ser409, Val91, Phe110, Pro405, and Val111 with 

binding energies greater than -0.50 kcal/mol (Figure 7e). Tyr408 was previously observed to 

contribute to olanzapine binding via a hydrogen bond with the nitrogen atom of the methyl 

piperazine (Salmas et al., 2017). However, it was observed that Tyr408 strongly interacts with 

olanzapine through a pi-cation interaction (Figure 8c) which could be attributed to its higher 

residue energy contribution of -3.8 kcal/mol (Figure 7e).  
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Figure 8.  2D inhibitor-complexes for (a) quetiapine (b) clozapine (c) olanzapine (d) 
aripiprazole (e) risperidone and (f) ziprasidone with D2 dopamine receptor showing important 
protein inhibitor interactions (Image prepared by author). 
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In the predicted binding mode of clozapine in DRD2 receptor (Figure 8b & 9b), clozapine 

extends its interactions above the orthosteric binding pocket into the extended binding pocket 

interacting strongly with Phe110, Cys182, Ile184, Ala185, Asn396, Tyr408 and Pro405 with 

interaction energies greater than -0.5 kcal/mol (Figure 7d). The protonated nitrogen of the 

methyl-piperazine ring forms stable hydrogen bonds with Asn396 and Asn402 (Table 3 and 

Figure 8b & 9b). Pi-alkyl interactions are also observed between the benzo-benzodiazepine 

group and Phe102, Pro405, and Ile184. Clozapine additionally forms hydrophobic interactions 

with Phe102, Ile180, Pro405, Ile184, Glu181 and Tyr408.  

The docking poses and molecular dynamics of quetiapine suggest a salt bridge interaction 

between Glu181 and the positively charged nitrogen of the piperazine ring. The hydroxyl in 

the ethoxyethanol group forms a stable hydrogen bond with Glu181 (Table 3 and Figure 8a & 

9a). Quetiapine was predicted to extends its binding above the orthosteric binding site into the 

extended binding pocket interacting strongly with Trp100, Ile184, and Tyr408. The residue 

interaction energy suggests Trp100, Cys107, Val111, Glu181, Cys182, ile184, Ala185 and 

Tyr408 to significantly contribute to the binding of quetiapine with interaction energies higher 

than −0.5 kcal/mol (Figure 7f). The high interaction energy of Trp100 (-3.0 kcal/mol) with 

quetiapine mainly stems from the observed π-cation interaction between Trp100 and the 

piperazine ring of quetiapine.  

The binding of risperidone in the D2 dopamine receptor is such that the fluorobenzisoxazol ring 

orients deep in the hydrophobic cleft interacting with Phe390, Trp386, Phe382, Phe198, 

Ser197, Thr119, Cys118, Val115 whereas the tetrahydropyridopyrimidinone ring of 

risperidone interacts with residues Phe110, Thr412, Trp100, Tyr408 and Val191 (Figure 8e & 

9e). The major residues with favourable interaction energy contribution to risperidone binding 

predominately originate from eleven residues (Asp114, Val115, Cys118, Thr119, Phe198, 

Trp386, Phe389, Phe390, Tyr408, Thr412, and Tyr416) with average energy contribution 

larger than −0.9 kcal/mol (Figure 7b). Asp114 forms hydrogen bond with the tertiary amine in 

the piperidine ring whereas a less stable hydrogen bond occurred between Thr412 and the 

oxygen atom in the tetrahydropyridopyrimidinone ring (Table 3). The fluorobenzisoxazol ring 

forms π-π interactions with Phe390, Trp386 and Phe198 whereas an alkyl-π interaction with 

Val115 and Cys118 were also observed. The piperidine ring also forms a π-cation interaction 

with Phe389.  
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Figure 9. 3D Docked complex of (a) quetiapine (b) clozapine (c) olanzapine (d) aripiprazole 
(e) risperidone and (f) ziprasidone with D2 dopamine receptor showing important interacting 
residues (Image prepared by author).  
 

The predicted binding mode of aripiprazole in DRD2 active places the dihydro-quinolin-2-one 

moiety deep into the hydrophobic cleft below the orthosteric binding site interacting with 

residues Thr119, Ser197, Phe198, Phe390, Cys118, Trp386, Phe389, Phe390, and Phe382 

(Figure 8d & 9d). The residue interaction analysis indicates that residues Asp114, Cys118, 

Ile184, Ala185, Trp386, Phe389, and Tyr408 of DRD2 contribute strongly to the binding of 

aripiprazole with binding energies greater than -1.0 kcal/mol (Figure 7a). Among these 

residues, the interaction energy of Asp114 with aripiprazole is the strongest (-2.3 kcal/mol). 

This stronger interaction energy from Asp114 may be due to the strong and stable hydrogen 

bond interaction (~72% occupancy) between Asp114 and aripiprazole (Table 3). This observed 

hydrogen bond interaction appears to be significant for the potency and stability of the 

aripiprazole-DRD2 complex. In addition, the dihydro-quinolin-2-one ring forms π-π 
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interactions with Phe390 and Trp386 whereas the dichlorophenyl group forms π-π stacking 

interactions with Trp100 and Tyr408 (Figure 8d).  

 

The binding mode of ziprasidone (Figure 8f & 9f) suggests a salt bridge between Asp114 and 

the nitrogen atom of the chloro-1,3-dihydroindol-2-one moiety. Additionally, the oxygen atom 

of chloro-1,3-dihydroindol-2-one ring is predicted to form less stable hydrogen bonds with 

Ser193 and Asn396 (Table 3). The chloro-1,3-dihydroindol-2-one moiety binds in a cavity 

surrounded by residues Phe389, Val111, Phe189, Ser193 and Ser194, forming π-π interactions 

with Phe189 and Phe389. The benzothiazole ring made interactions with Ala185, Ile184, 

Leu94, Pro405, and Trp100 during the simulation. The residues interaction energy analysis 

reveals that Trp100, Val111, Ile184, Phe189, Val190, Ser193, Phe389, His393, Pro405 and 

Tyr408 strongly contribute to ziprasidone binding with energies greater than − 0.5 kcal/mol 

(Figure 6d). The high interaction energy of Trp100 (-2.9 kcal/mol) stems from the π-cation and 

π-sulphur interactions with the piperazine ring and benzothiazole ring, respectively whereas 

that of Tyr408 (-2.1 kcal/mol) stems from the π-cation interactions with the piperazine ring. 

These residues may contribute significantly to the stability and binding of ziprasidone to DRD2 

receptor.   

Asp1143.32 (superscript denote Ballesteros Weinstein numbering system) elicits a unique 

interaction pattern common to all Class-II inhibitors, which further potentiates the importance 

of this interaction as primarily observed in the co-crystallised complex of DRD2 with 

risperidone (Wang et al., 2018). Asp3.32 is a conserved residue observed in the structures of 

aminergic receptors and has been observed to form vital interactions with their inhibitors. The 

importance of this conserved residue has been reported in several aminergic crystalised 

structures: Asp1143.32 forms a salt bridge with the tertiary amine of risperidone in DRD2 (Wang 

et al., 2018); the tertiary amine of eticlopride forms a salt bridge with Asp1103.32 in DRD3 

(Chien et al., 2010); the conserved Asp1153.32 also interacts with nemonapride in DRD4 (Wang 

et al., 2017); whereas risperidone and Zotepine also form a salt bridge between the basic 

nitrogen of these inhibitors and Asp1553.32 in 5-HT2A receptor (Kimura et al., 2019). This salt 

bridge appears to be vital for high-affinity inhibitor binding to aminergic subfamily of GPCRs 

(Shi & Javitch, 2002). 

 

4. Conclusions  

The recent availability of the crystal structure of DRD2-drug complex provides avenues for 

structure-based molecular dynamics simulations to be performed to uncover the mechanisms 
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of ligand recognition at the molecular level. In this study, molecular docking, all-atom 

molecular dynamics simulations of D2 dopamine receptor in explicit lipid-bilayer were 

performed in complex with selected atypical antipsychotic drugs to decipher the binding 

mechanism and the effect of ligand binding on the conformational changes of the DRD2 

receptor. The dynamic interaction patterns analysis showed that DRD2 extracellular and 

intracellular loop flexibility are large and binding site residues dynamic behaviour is different 

due to the presence of structurally different ligands. The interaction energy calculation by MM-

GBSA method showed that van der Waals interaction dominates the binding of atypical 

antipsychotics to DRD2 receptor.  

Additionally, the binding of atypical antipsychotic ligands into DRD2 binding site displayed 

different interactions ranging from hydrogen bonding (salt bridge), hydrophobic CH-π and π-

π interactions formed between distinct subsite residues and the ligand atoms. Findings from 

this study further revealed a binding mode of atypical class-II drugs where the dihydro-2-

quinolinone moiety of aripiprazole, the dihydro-indol-2-one moiety of ziprasidone and the 

fluorobenzisoxazole moiety of risperidone bind deep into DRD2 hydrophobic pocket defined 

by residues Thr119, Ser197, Phe198, Phe390, Cys118, Trp386, Phe389, Phe390, and Phe382 

of transmembrane (TM) III, V and VI.  These residues significantly contributed to the binding 

and stability of these drugs as evident by the residue interaction energy analysis. Asp114 was 

observed to form a strong and stable hydrogen bond in all class-II atypical drugs. This hydrogen 

bond interaction seems to be important for potency as well as for the stability of atypical class-

II drugs.  

Contrary to the observed binding mode and interaction pattern of class-II antipsychotics, class-

I antipsychotics depict different interaction pattern and mode of action in DRD2 receptor. The 

binding of class-I antipsychotics extends into the extended binding pocket above the orthosteric 

binding pocket characterised by Trp100, Phe110, Val,91, Tyr408, Ile184 and Leu94. These 

residues made a significant contribution to the binding and stability of class-I antipsychotics. 

As reported by Wang et al. (Wang et al., 2018) neither DRD3 inhibitor eticlopride nor DRD4 

inhibitor nemonapride occupies the deep hydrophobic pocket. Hence, the binding of class-II 

atypical antipsychotic drugs in the deep opening hydrophobic sub-pocket can be exploited in 

the design of the next generation subtype selective DRD2 antagonists. 
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Abstract 

More recently, there has been a paradigm shift towards selective drug targeting in the treatment 

of neurological disorders, including drug addiction, schizophrenia, and Parkinson’s disease 

mediated by the different dopamine receptor subtypes. Antagonists with higher selectivity for 

D3 dopamine receptor (D3DR) over D2 dopamine receptor (D2DR) have been shown to 

attenuate drug-seeking behaviour and associated side effects compared to non-subtype 

selective antagonists. However, high conservations among constituent residues of both 

proteins, particularly at the ligand-binding pockets, remains a challenge to therapeutic drug 

design. Recent studies have reported the discovery of two small-molecules R-VK4-40 and Y-

QA31 which substantially inhibited D3DR with > 180-fold selectivity over D2DR. Therefore, 

in this study, we seek to provide molecular and structural insights into these differential binding 

mechanistic using meta-analytic computational simulation methods. Findings revealed that R-

VK4-40 and Y-QA31 adopted shallow binding modes and were more surface-exposed at 

D3DR while on the contrary, they exhibited deep hydrophobic pocket binding at D2DR. Also, 

two non-conserved residues; Tyr361.39 and Ser18245.51 were identified in D3DR, based on their 

crucial roles and contributions to the selective binding of R-VK4-40 and Y-QA31. Importantly, 

both antagonists exhibited high affinities in complex with D3DR compared to D2DR, while 

van der Waals energies contributed majorly to their binding and stability. Structural analyses 

also revealed the distinct stabilizing effects of both compounds on D3DR secondary 

architecture relative to D2DR. Therefore, findings herein pinpointed the origin and mechanistic 

of selectivity of the compounds which may assist in the rational design of potential small-

molecules of the D2-like dopamine family receptor subtype with improved potency and 

selectivity.  

 

Keywords: D3 dopamine receptor, D2 dopamine receptor, Selective antagonist, R-VK4-40, 

Y-QA31, Molecular docking, Molecular dynamics simulation, Membrane lipid bilayer 
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1 Introduction  

G-protein-coupled receptors (GPCRs) modulate the activity of a diverse range of stimuli signal 

pathways through heterotrimeric G proteins activation such as ions, peptides, small molecules, 

and globular proteins (Weis & Kobilka, 2018). Dopamine receptors belong to the GPCRs, 

which constitute seven transmembrane (TM) helical domains. The dopaminergic pathway is 

involved in diverse physiological processes such as motor behaviour, neuroendocrine function, 

cognitive function, and emotion. However, the dysfunction of the dopaminergic system and 

the closely related D3 and D2 dopamine receptors are implicated in neurological and psychiatric 

pathologies such as schizophrenia, Parkinson’s disease, substance abuse as well as attention 

deficit hyperactivity disorder (ADHD)(Rangel-Barajas et al., 2015; Maggio et al., 2015; 

Beaulieu & Gainetdinov, 2011; Heidbreder & Newman, 2010).  

The high-resolution structures of GPCRs have proven to be vital in structure-based drug design 

(SBDD) methods in tailoring ligand selectivity and inhibitor efficacy (Congreve et al., 2014; 

Liu et al., 2018). The crystal structures of the D2 receptor bound to risperidone(Wang et al., 

2018) and haloperidol (Fan et al., 2020), as well as the D3 receptor bound to eticlopride(Chien 

et al., 2010), have been solved. However, the estimated 78% high degree of transmembrane 

(TM) sequence similarity and the near-identity of binding site residues between D2 and D3 

dopamine receptors, poses a challenge toward the development of D2-like receptor subtype-

selective inhibitors with enhanced drug-like properties (Sibley & Monsma Jr, 1992). Current 

marketed antipsychotic drugs lack selectivity toward a given D2-like receptor subtype(Li et al., 

2016). They are associated with substantial side effects such as metabolic syndrome, 

cardiovascular hypertension, and neurological side effects, including tardive dyskinesia and 

extrapyramidal reactions (Kaar et al., 2020; Ballon et al., 2014; Álvarez et al., 2013). These 

adverse effects reduce compliance with medication and the quality of life (Lieberman et al., 

2005; Novick et al., 2010). 

The selective targeting of each D2-like receptor subtypes has been posited to produce fewer 

side effects(Li et al., 2016; Holmes et al., 2004). Among D2-like dopamine receptors, D3DR 

has received increasing pharmacotherapeutic interest in drug abuse disorders treatments 

(Micheli, 2011; Newman, Blaylock, et al., 2012). D3 dopamine receptor has the highest affinity 

for dopamine and displays limited distribution in the mesolimbic system compared to the other 

dopamine receptor subtypes (Keck et al., 2015; Sokoloff & Le Foll, 2017). As such, fewer side 

effects are anticipated to be exerted by pharmacological agents that selectively target D3DR 

compared to the other dopamine receptors. Inhibitors that selectively bind to D3 dopamine 
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receptors may demonstrate efficacy towards a wide range of schizophrenia symptoms with 

fewer side effects (Sokoloff et al., 2006; Girgis et al., 2016). The D3 dopamine receptor has 

been identified to improve some aspects of cognitive, negative (social withdrawal, mutism, and 

blunted effect) and positive (delusions and hallucinations) symptoms of schizophrenia, with 

reduced extrapyramidal side effects (EPS) caused by D2 dopamine receptor blockade 

(Miyamoto et al., 2012).  

Furthermore, the selective antagonism of D3DR has been shown to enhance the stimulant 

behaviour effects of cocaine in mice, which is opposite to the effect produced by selective 

antagonism of D2DR or nonselective D2-like receptor antagonists (Manvich et al., 2019). Also, 

selective antagonist binding at the D3 receptor has been shown to display promising results in 

reducing cocaine, and opioid reward and are highly effective in mitigating relapse to drug-

seeking behaviour in preclinical models (Andreoli et al., 2003; Higley et al., 2011; Galaj et al., 

2015). Extensive medicinal chemistry research efforts had led to the development of D3 

dopamine receptor selective partial agonists and antagonists such as BP 897, NGB 2904, SB 

277,011A and GSK598,809. However, the clinical development of D3DR-selective 

antagonists, including SB-277,011A and GSK598,809 have been halted due to an increase in 

blood pressure in the presence of cocaine in freely moving dog and rat models (Appel et al., 

2015; Appel & Acri, 2017; Appel & Acri, 2018). Presently, there exist no medications 

approved by the FDA for cocaine use disorder treatment. Moreover, currently approved drugs 

for opioid use disorder treatment, including buprenorphine and methadone, are opioid-based 

possessing several drawbacks such as respiratory suppression side effects and abuse liability 

(Jordan, Cao, et al., 2019).  

Shaik and colleagues recently identified a novel highly selective D3DR antagonist as R-VK4-

40 (Shaik et al., 2019), which is an R-enantiomer resolved from the compound (±)VK4-40 

reported earlier by Kumar and colleagues as compound 40 (Kumar et al., 2016). Also, Y-QA31 

is another novel D3DR selective antagonist recently identified to exhibit antipsychotic activity 

in preclinical studies of schizophrenia (Sun et al., 2016). These new D3 dopamine receptor 

antagonists demonstrated higher selectivity (over 180-fold in ligand binding studies) toward 

D3 over the D2 dopamine receptor (Jordan, Humburg, Rice, et al., 2019; Sun et al., 2016) 

(Figure 1). R-VK4-40 decreases oxycodone rewarding effects while augmenting oxycodone 

analgesic effect via the selective inhibition of D3DR (Jordan, Humburg, Rice, et al., 2019; de 

Guglielmo et al., 2020). Contrary to the side effect of  GSK598,809 and SB277011A in 

increasing blood pressure in the presence of cocaine (Appel et al., 2015; Appel & Acri, 2018), 
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R-VK4-40 do not exhibit adverse cardiovascular effects when combined with cocaine (Jordan, 

Humburg, Thorndike, et al., 2019). Also, Y-QA31 exhibit antipsychotic effects in cognitive 

dysfunction, negative and positive symptoms without inducing extrapyramidal side effects in 

preclinical models of schizophrenia (Sun et al., 2016).  

However, the structural determinant and atomistic molecular mechanistic by which R-VK4-40 

and Y-QA31 achieved their selectivity at D3DR over D2DR remain uncertain. To address this 

gap, diverse in silico protocols have been utilised in this study to investigate the selective 

binding mechanistic of R-VK4-40 and Y-QA31 D3DR over D2DR. Firstly, molecular docking 

was performed to predict the potential binding modes of R-VK4-40 and Y-QA31 at D2 and D3 

dopamine receptors. Comparative molecular dynamics simulations of the four complexes were 

performed in a lipid bilayer environment and their dynamic properties compared. End-point 

binding free energy estimations were also utilized to assess the differential energetic 

contributions as well as critical residues driving the selectivity of R-VK4-40 and Y-QA31 

towards D3DR. The results presented highlights the structural basis of selectivity and could aid 

in the rational design of novel potential selective inhibitors of D3 dopamine receptor subtype. 

 

 

Figure 1. Chemical structures of R-VK4-40 and Y-QA31 and their binding affinities at D2 
and D3 dopamine receptors (Image prepared by author). 
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2 Materials and Methods 

2.1 Protein preparation 

The crystallographic structures of the inactive D2 and D3 dopamine receptors were retrieved 

from the Protein Data Bank (RCSB PDB, http://www.rcsb.org/) with entries 6CM4 (Wang et 

al., 2018), and 3PBL (Chien et al., 2010), respectively. The engineered proteins with T4 

lysozyme (T4L) or nano antibody, co-crystallised molecular fragments, and water were deleted 

from the crystallographic structures. The thermostabilising crystallographic mutated residues 

(Ile1223.40A, L3756.37A, and L3796.41A) in D2DR and mutated residue Leu1193.41Trp in D3DR 

were reverted to their respective wild types. The protein structures were further pre-processed 

using the Protein Preparation Wizard module from the Maestro Schrodinger suite (Schrödinger 

Release 2019-4, 2019). The protein preparation involved the addition of hydrogens, assigning 

bond orders, and the removal of water molecules beyond 5 Å of any hetero group. Missing 

loops were also modelled. PROPKA was used to designate the protonation state at a 

physiological pH. The protein was further energy minimised at a 0.50 Å root mean square 

deviation using the OPLS3e force field (Schrödinger Release 2019-4, 2019). 

 

2.2 Ligand preparation 

The 3D structures of R-VK4-40 and Y-QA31 antagonists were retrieved from the PubChem 

database with the PubChem IDs 130431314, and 46195521, respectively. The selected 

antagonists were pre-processed using the LigPrep module of Maestro (Schrödinger Release 

2019-4, 2019) at a pH of 7.0 ± 2 to generate multiple states of possible protonation state, 

stereoisomers, ring conformations, and tautomer. The pre-processed ligands were then energy 

minimised to obtain a reasonable 3D conformation using the OPLS3e force field.  

 

2.3 Molecular Docking  

The Glide ligand docking panel (Friesner et al., 2004) implemented in the 2019 Schrödinger 

software package was utilized to predict the binding modes of R-VK4-40 and Y-QA31 at the 

active site of D3 and D2 dopamine receptors. The dimension of the grid box for the molecular 

docking was defined by the centroid of risperidone and eticlopride at D2DR and D3DR co-

crystallised structures, respectively. An outer receptor grid box of 28 × 28 × 28 Å3 with a default 

inner box size of 10 × 10 × 10 Å3 were assigned for D2DR with an X, Y and Z centre grid of 

9.66, 5.41 and -10.20, respectively. Similarly, an outer receptor grid box of 24 × 24 × 24 Å3 

with a default inner box size of 10 × 10 × 10 Å3 were assigned for D3DR with an X, Y and Z 

centre grid of -0.03, -15.37 and 10.54, respectively. The Glide standard precision (SP) was used 
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in predicting various poses per compound and scored using the extra precision (XP) (Friesner 

et al., 2006). The docked receptor-ligand complexes with the lowest binding energies were 

selected as complex structures for the MD simulation setup and production. To validate the 

molecular docking procedure, risperidone and eticlopride were redocked as a positive control 

at D2DR and D3DR, respectively. The re-docked D2DR-risperidone and D3DR-eticlopride 

mimicked the observed crystallised binding mode (Figure S1). 

 

2.4 D3 and D2 dopamine receptor complexes in lipid bilayer setup 

The docked D2 and D3 dopamine receptor-ligand complexes were embedded in palmitoyl-

oleoylphosphatidyl-choline (POPC) membrane lipid bilayer assembled with the CHARMM-

GUI membrane builder (Wu et al., 2014). Each complex was aligned in a 180 homogeneous 

POPC lipid bilayer using the orientation of proteins membranes (OPM) with a rectangular box 

type (Lomize et al., 2006). TIP3P water molecules and 0.15M KCl were utilised to solvate and 

ionise the oriented systems, respectively. The charmmlipid2amber.py script was further used 

to process the solvated membrane-bound systems by renaming the POPC lipid residues 

according to the Amber Lipid17 force field. Molecular dynamics starting coordinate and 

topology files were generated with tleap module in Amber 18 using lipid17, ff14SB, and TIP3P 

forcefields for the lipid bilayer, protein, and water, respectively.  

 

2.5 Molecular dynamics (MD) simulations 

The unbound and docked D2 and D3 dopamine receptor-ligand complexes embedded in ionised 

solvated lipid bilayer were used as the starting coordinates for the unbiased molecular dynamics 

simulation. The simulations were run using the CUDA version of Particle Mesh Ewald 

Molecular Dynamics (PMEMD) in Amber18 on GPU (Salomon-Ferrer et al., 2013; Le Grand 

et al., 2013). Energy minimisation was performed for each system to relax and remove possible 

steric clashes. An initial 15,000 steps minimisations were performed with a 10.0 kcal/mol/Å2 

constraint on all heavy atoms of the protein and the ligand. The initial minimization consisted 

of 5000 steps of steepest descent and 10000 steps of a conjugate gradient. An additional 10,000 

minimisation steps were performed without any restraints. The simulating systems were 

initially heated using the Langevin thermostat from 0 K to 100 K in isothermal-isochoric 

ensemble (NVT) ensemble with a 10.0 kcal/mol/Å2 harmonic restraints applied on the non-

hydrogen atoms of the protein and lipids for 12.5 ps. The systems were further heated to 310 

K in isothermal–isobaric (NPT) ensemble with anisotropic pressure scaling and pressure 

scaling of 1 bar for 125 ps. 
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System equilibration was performed with an initial 5.0 kcal/mol/Å2 harmonic restraint of on 

the protein and ligand. This was further lowered by 1.0 kcal/mol/Å2 in a stepwise manner every 

4 ns for a total of 20 ns at 310 K. An additional 5 ns unrestrained equilibration was performed 

before production. Finally, a duplicate all-atom MD simulation of 600 ns were run for each 

system, with randomized initial velocities were performed. An integration time step of 2 fs was 

set for each system at 310 K, and 1 bar in isothermal–isobaric (NPT) ensemble. The subsequent 

analysis was performed on the system where the final structure showed the utmost 

conformational stability. The trajectory coordinates were saved at every 50 ps intervals for 

subsequent analysis. All hydrogen containing bonds were constraint with the SHAKE 

algorithm(Ryckaert et al., 1977). For each system, the Langevin thermostat with a 1.0 ps-1 

collision frequency, a 12.0 Å electrostatic cut-off, and the Particle Mesh Ewald method applied 

for long-range electrostatic interactions was set. The details of the simulation system 

parameters are shown in Table S1. 

 

2.6 Analysis of MD trajectories 

The simulation trajectories were analysed using the Amber 18 analysis tool CPPTRAJ(Roe & 

Cheatham, 2013). The overall complex root mean square deviation (RMSD) of each simulation 

was calculated. The radius of gyration (Rg) and the solvent-accessible surface area (SASA) 

values within 8 Å the binding site and the entire receptor for each system relative to the initial 

structural configuration were also analysed. The binding site was defined as all amino acid 

residues within 8 Å of the bound antagonist and the unbound binding pocket. The RMSD, 

SASA, and Rg values are expressed as mean ± standard deviation (Mean±SD). Snapshots of 

the complexes, average structures, and distances were also calculated using CPPTRAJ over the 

entire trajectories. Key biologically relevant protein-ligand interactions were generated with 

Discovery studio visualizer (Accelrys, 2013) and the Protein-Ligand Interaction Profiler 

(Salentin et al., 2015). The 3D visualised graphics designs of the protein-ligand interaction 

were done with PyMOL (Schrodinger, 2010) and Chimera (Pettersen et al., 2004). 

 

2.7 Residue indices and numbering in transmembrane (TM) and Extracellular loops 

(ECL)  

To enable comparison of residue among the two dopamine receptors, superscripts have been 

assigned to each residue denoting Ballesteros-Weinstein numbering (Ballesteros & Weinstein, 

1995) for the transmembrane regions and the GPCRdb (Isberg et al., 2016)  numbering for 

extracellular and intracellular loop regions. The Ballesteros-Weinstein nomenclature assigns 
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each transmembrane residue with an index number corresponding to the position of the residue 

in that transmembrane domain. For example, the conserved Asp residue in TM3 (which is 

Asp1103.32 in D3DR and Asp1143.32 in D2DR) is denoted as Asp3.32 where 3 stands for TM3 

and 32 stands for the position of the Asp residue in TM3.   

 

2.8 Clustering and Principal component analysis (PCA) 

The MD trajectories were subjected to clustering and principal component analysis (PCA) to 

probe the conformational relationships for the individual antagonist complex system. 

Individual frames were superposed to the original frame before the PCA calculations to 

eliminate rotation and displacement of structures. For each system having N atoms, the internal 

trajectory motion can be illustrated as 3 N_3 N of the covariance matrix C, where every column 

includes the cartesian coordinate X of every precise atom at each trajectory frame: 

Cij = < (Xi - < Xi >) (Xj - < Xj >) >                                              1  

The decomposition of the covariance matrix C generates the principal modes as 

C = VɅVT                                                                 2 

where V contains the eigenvector of matrix C and K denotes the eigenvalues of the diagonal 

matrix. In this study, the principal component analysis calculation and clustering analysis were 

calculated with the Amber 18 CPPTRAJ module and the R package Bio3D (Grant et al., 2006). 

The MD trajectories distribution was projected onto the first and second principal components. 

 

2.9 Binding free energy calculations  

The binding free energies were evaluated by the molecular mechanics/generalised Born solvent 

accessible surface area (MM/GBSA)(Miller III et al., 2012) method of Amber 18 to determine 

the interaction energies of R-VK4-40 and Y-QA31 at the D3 and D2 dopamine receptors. 

The ante-MMPBSA.py module (Miller III et al., 2012) of Amber 18 was utilized in generating 

the topologies of the ligands, receptor, and complex to be used in the MM/GBSA calculations. 

The MM/GBSA method estimates the relative binding free energy (∆G(:*+) via the following 

equation: 

∆GS2T1 = ∆EUU + ∆G6"$ − T∆S																																																											3 

                       							∆EUU = ∆EV1W + ∆E4$4 																																																																		4 

∆G6"$ = ∆GX"$ + ∆GT"TX"$#5 																																																													5 

Where, ∆EJJ and ∆G,)/ denote the molecular mechanics interaction energy and the solvation 

free energy, respectively. −f∆Å is the entropy contribution. The summation of the van der 
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Waals (∆EV1W) interaction energy and the electrostatic (∆E4$4) interaction energy constitute the 

molecular mechanics interaction energy (∆EUU) between the receptor and ligand. The 

contribution of the solvation free energy is further decomposed into the polar (∆GX"$) and the 

non-polar (∆GT"TX"$#5) terms. 

In this study, the generalised Born approach was used with an implicit generalised Born solvent 

model and 0.15 M ionic strength. For each complex system, 2000 snapshots were extracted 

from the last 400ns trajectories at an interval of 200 ps. The entropy contribution was estimated 

using the normal mode harmonic approximation method. The decomposition of the pairwise 

interaction energies into active site residue contribution was also computed.  

 

3 Results  

3.1 Sequence and structural similarities between D2 and D3 dopamine receptors 

Pairwise sequence alignment of D2 and D3 dopamine receptor was performed to identify the 

level of conservations in the amino acid sequence of the transmembrane helices (TM1-TM7), 

extracellular loops (ECL1-ECL3), and intracellular loops (ICL1-ICL3) (Figure 2). The amino 

acid sequence analysis reveals that the transmembrane domains TM2-TM7 are mainly 

conserved compared to the TM1 domain. The extracellular half of TM1 (1.35 to 1.50) between 

D2DR and D3DR contains 44% non-conserved residues (Figure 2). A substantial diversity in 

amino acids was also observed in the extracellular loop regions. Although the design of D3/D2 

selective compounds has being a challenge; however, the observed differences between D3 and 

D2 receptors can be harnessed towards the development of selective antagonists.   
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Figure 2 Comparison of amino acid sequences of D2 and D3 dopamine receptors showing 
conservation of residues and motifs. The black box markings on TM3, TM6 and TM7 
highlights the conserved Class-A GPCR motifs DRY, CWXP and NPXXY, respectively. The 
transmembrane sections indexing is based on the Ballesteros & Weinstein system (Ballesteros 
& Weinstein, 1995). PRALINE multiple sequence analyser was used to construct the sequence 
alignment (Simossis & Heringa, 2005; Simossis & Heringa, 2003) (Image prepared by author).  
 

3.2 Differential binding modes of R-VK4-40 and Y-QA31 to D2 and D3 dopamine 

receptors. 

The potential complex structures of D2DR/R-VK4-40, D2DR/Y-QA31, D3DR/R-VK4-40, 

and D3DR/Y-QA31 used in this study were predicted with the Glide extra precision (XP) 

docking protocol. The crystallographic structures of D2DR bound with risperidone (6CM4) 

and D3DR in complex with eticlopride (3PBL) were used to predict the potential binding mode 

of R-VK4-40 and Y-QA31. To validate the predictive accuracy of the of Glide XP docking 

scoring, the co-crystallised inhibitors were extracted and re-docked into their respective 

receptors. The predicted binding poses and the experimental binding conformation overlaps in 

the same binding site (Figure S1). The interaction mode of R-VK4-40 and Y-QA31 with best-

ranked conformers and lowest binding free energy score at D2DR and D3DR were selected for 

MD simulations. The predicted binding poses between the antagonists (R-VK4-40 and Y-

QA31) and the receptors (D2DR and D3DR) are shown in Figure 3.  In the predicted binding 
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mode of R-VK4-40 and Y-QA31 at D2DR, the indole moiety and the 1-(2-

methoxyphenyl)piperazinyl moiety, respectively extend deeper into the orthosteric binding 

pocket (OBP) of D2DR defined by TM3, TM5 and TM6 side chains. In contrast, R-VK4-40 

and Y-QA31 binding extend higher in the OBP, adopting a shallow binding mode at D3DR 

(Figure 3). 

 

 

Figure 3 Intermolecular interactions for D2DR/R-VK4-40 (A), D3DR/R-VK4-40 (B), 
D2DR/Y-QA31 (C), and D3DR/Y-QA31 (D) from molecular docking. Hydrogen bonds, π-π 
stacking, hydrophobic and salt-bridge interactions are depicted in blue, magenta, orange, and 
red, respectively. Hydrogen bond distances are displayed in Angstrom (Å) (Image prepared by 
author).   
 

3.3 Conformational dynamics of D2 and D3 dopamine receptors upon antagonist binding. 

Molecular simulations in the past decades have enabled the detailed structural configurations 

and interactions of macromolecules with other molecular species to be characterised in 

different environments (Elber, 2016; Hosen et al., 2019). In this study, 600 ns all-atom MD 
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simulations were performed for each D3 and D2 dopamine receptor complexes and apo systems 

to investigate the detailed binding process and to access their dynamic structural characteristics. 

The dynamic stability, structural properties, as well as the energetics for all the complex 

systems, were assessed to obtain insights into the detailed structures of conformational change 

in each studied system.  

 

3.4 Interaction energy components clarify selective binding potency at D3DR over 

D2DR. 

The relative binding free energies were evaluated for the four complexes by the MM/GBSA 

approach and were decomposed into various energy contribution terms (solvation energies, 

gas-phase energies, and entropic contribution). Computing the binding free energy was to 

evaluate inhibitor binding selectivity towards D2DR and D3DR. The MM/GBSA method can 

provide a high correlation with experimental values and good ranking of protein-ligand 

complexes (Genheden & Ryde, 2015; Sun et al., 2018). Table 1 shows the estimated binding 

free energies (∆Gbind) by MM/GBSA from the MD trajectories, and the experimental binding 

energy (ΔGexp) obtained from the experimental inhibition constants (Ki) in Figure 1 (Sun et al., 

2016; Jordan, Humburg, Rice, et al., 2019). The experimental binding energies (ΔGexp) were 

calculated from the experimental inhibition constant (Ki) using the formula: 

ΔG(inhibition) = RTlnKi, where T is the temperature (298.15 K), and R is the universal gas 

constant (1.985 × 10−3 kcal/mol/K). The predicted MM/GBSA binding affinities for R-VK4-

40 and Y-QA31 at D3DR were -23.62 ± 1.37 kcal/mol and -24.65 ± 0.93 kcal/mol, whereas 

that of R-VK4-40 and Y-QA31 at D2DR were -11.05 ± 0.58 kcal/mol and -10.01 ± 1.36 

kcal/mol, respectively. Similarly, the experimental binding free energy (ΔGexp) calculated for 

R-VK4-40 and Y-QA31 at D3DR were -12.99 kcal/mol and -13.02 kcal/mol, whereas that of 

R-VK4-40 and Y-QA31 at D2DR were -9.70 kcal/mol and -9.93 kcal/mol, respectively. The 

above obtained quantitative theoretical and experimental binding free energies indicate that R-

VK4-40 and Y-QA31 are less potent at D2DR than at D3DR.  
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Table 1 Individual energy component contribution to the overall binding free energy 
(kcal/mol) estimation using the MM-GBSA approach for D2DR and D3DR complexes.  

Energetic 
Terms 

       R-VK4-40         Y-QA31 
       D2DR                    D3DR       D2DR                   D3DR 

ΔGvdW -46.61 ± 0.06 -54.65 ± 0.08 -47.06 ± 0.10 -57.71 ± 0.08 
ΔGelec -13.29 ± 0.08 -20.40 ± 0.19 -8.24 ± 0.17 -11.96 ± 0.11 
ΔGpolar 30.25 ± 0.06 37.24 ± 0.14 24.89 ± 0.13 31.35 ± 0.08 
ΔGnonpolar -5.80 ± 0.01 -6.78 ± 0.01 -5.70 ± 0.01 -7.42 ± 0.01 
ΔGMM -59.90 ± 0.10 -75.05 ± 0.23 -55.30 ± 0.22 -69.67 ± 0.13 
ΔGsol  24.46 ± 0.06 30.46 ± 0.14 19.19 ± 0.12 23.93 ± 0.08 
ΔH -35.44 ± 0.08 -44.58 ± 0.15 -36.11 ± 0.14 -45.74 ± 0.10 
-ΔTS     24.39 ± 0.66     20.96 ± 1.52     26.10 ± 1.50    21.09 ± 1.03  
ΔGbind     -11.05 ± 0.58     -23.62 ± 1.37      -10.01 ± 1.36 -24.65 ± 0.93    
aΔGexp          -9.70          -12.99          -9.93         -13.02 
ΔGvdW = van der Waals energy; ΔGelec = Electrostatic energy; ΔGMM = molecular mechanics 

energy; ΔGsol = solvation energy contribution; ΔGnonpolar = Nonpolar solvation energy;  

ΔGpolar = Polar solvation energy; -ΔTS = Entropy contribution; ΔGbind = Binding free energy. 
 aΔGexp = The calculated experimental binding free energy (ΔG) obtained from the 

experimental inhibition constant (Ki) in Figure 1 using the formula: ΔG(inhibition) = RTlnKi, 

where T is the temperature (298.15 K), and R is the universal gas constant (1.985 × 10−3 
kcal/mol/K). 

 

From the analyses, van der Waals energy and electrostatic energy were observed to be the 

significant contributors to the overall binding of the antagonists. In the interactions of 

compounds R-VK4-40 and Y-QA31 with D2DR, the electrostatic (-13.29 and -8.24 kcal/mol, 

respectively) and the van der Waals (-46.61 and -47.06 kcal/mol, respectively) energy values 

suggest that van der Waals interactions (hydrophobic interactions) were the dominant binding 

forces of D2DR with its antagonists. Similarly, in the interactions of R-VK4-40 and Y-QA31 

with D3DR, electrostatic (-20.40 and -11.96 kcal/mol, respectively) and van der Waals 

interactions (-54.65 and -57.71 kcal/mol, respectively) also made favourable interactions with 

D3DR binding site residues. Thus, van der Waals interaction of R-VK4-40 and Y-QA31 were 

more dominant at D3DR than at D2DR. For all the ligand-receptor complexes, unfavourable 

polar solvation energy opposed the favourable electrostatic energies in the gas phase. 

Furthermore, conformational entropy (-ΔTS) contribution was observed to be relatively more 

unfavourable for inhibitor binding at D2DR than at D3DR. As highlighted in the above 

descriptions, the increase in binding enthalpy with the corresponding decrease in entropy of R-

VK4-40 and Y-QA31 at D3DR relative to D2DR seems to mainly drive the selective binding 

of these antagonists toward D3DR over D2DR. Thus, optimising the binding enthalpy of 

antagonists to D3DR over D2DR may be an essential aspect towards the design of D3DR 

selective antagonists. 
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3.5 Inhibitor−residue interaction network reveals the basis of antagonist selectivity  

To uncover the atomistic interaction mechanistic of the antagonist selectivity and specificity at 

D3DR over D2DR, we investigated receptor residues that significantly interacted with the 

studied antagonists. The decomposition of the predicted binding affinities per active site 

residues was analysed to obtain further insight into the patterns of receptor-antagonist 

recognition and the distributions of the energy by active site residues.	The residues with 

substantial energy contributions to antagonist binding are presented in Figure 4.  

 

3.5.1 Binding of R-VK4-40 to D3DR versus D2DR. As shown in Figure 4A, R-VK4-40 made 

favourable interactions greater than −0.6 kcal/mol with ten residues in D2DR. These are 

Val1153.33 (-1.43), Ile18445.52 (-0.67), Asn1865.35 (-0.64), Pro1875.36 (-2.53) Phe1895.38 (-1.93), 

Val1905.39 (-2.63), Ser1935.42 (-1.70), Phe3896.51 (-1.06), His3936.55 (-0.77), and Ile3976.59 (-

1.95). The interaction energies of Phe1895.38, Phe3896.51 and His3936.55 agree structurally with 

the π-π stacking interactions with the indole ring and the CH-π contacts of the alkyls of 

Val1905.39, Pro1875.36 and Ile3976.59 with the chloro-ethylbenzene ring of R-VK4-40 (Figure 

S2). The indole group also engaged in a π-sulphur and π-alkyl interaction with Cys1183.36 and 

Val1153.33, respectively. It is worth remarking that R-VK4-40 engages in three hydrogen bond 

interactions with D2DR, such as Ser1935.42, Ile18445.52 and His3936.55 (Figure S2). The 

hydrogen bond of Ser1935.42 is with the indole nitrogen, Ile18445.52 with the hydroxy group in 

the N-((S)-3-hydroxypentyl)acetamide linker, while His3936.55 with the oxygen atom in the 

acetamide unit (Figure S2).  

Compared to the D2DR/R-VK4-40 complex, the binding interactions of R-VK4-40 with D3DR 

are relatively different (Figure 4B and Figure S3). The interaction energies of R-VK4-40 with 

ten residues in D3DR are observed to have energy values stronger than −0.6 kcal/mol (Figure 

4B). These include Val1113.33 (-2.47), Cys1143.36 (-0.71), Thr1153.37 (-0.80), Ser18245.51 (-

1.11), Ile18345.52 (-1.50), Val1895.39 (-0.85), Phe3456.51 (-1.00), His3496.55 (-0.90), Tyr3657.35 

(-0.82) and Thr3697.39 (-1.19). The 1-(2-chloro-3-ethylphenyl)piperazinyl moiety engaged in 

π-π interactions with Phe1975.47, and Tyr3657.35, as well as π-alkyl interactions with Val1113.33, 

His3496.55, Ile18345.52, and Phe3456.51 (Figure S3). Additionally, π-sulphur interaction is 

observed with Cys1143.36 and the 1-(2-chloro-3-ethylphenyl)piperazinyl moiety. R-VK4-40 

forms a salt bridge interaction between the linker hydroxy and Asp1103.32. A hydrogen bond is 

also observed between the indole nitrogen and Ser3667.36. Additional hydrogen bonds are 

further formed between the carboxamide and Thr3697.39, and Tyr3657.35, whereas the hydroxy 

on the linker engage in a hydrogen bond with Ser18245.51 (Figure S3).  
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The binding of R-VK4-40 at D2DR made substantially distinct interactions with residues 

mainly in the TM5 and TM6 domains. In contrast, R-VK4-40 made significant interactions 

with residues in the TM3 and TM7 domains of D3DR. However, a few common interactions 

are observed for residues such as Val3.33, Ile45.52, Phe6.51 and His6.55 in both receptors, which 

cumulatively displayed higher inhibitor interactions at D3DR over D2DR.   

 

3.5.2 Binding of Y-QA31 to D3DR versus D2DR.  As observed in Figure 4C and Figure S4, 

Y-QA31 made favourable interactions with energy values stronger than -0.6 kcal/mol with 

eight residues in D2DR. These residues include Ile18445.52 (-0.82), Val1905.39 (-1.35), 

Ser1935.42 (-1.33), Ser1945.43 (-1.66), Phe1985.47 (-1.08), Phe3896.51 (-1.54), Phe3906.52 (-0.66) 

and His3936.55 (-0.65) (Figure 4C). The deep binding pocket residues Phe1985.47, Trp3866.48 

and Phe3896.51 structurally make π-π stacking interactions with the 1-(2-

methoxyphenyl)piperazinyl moiety of Y-QA31. Ile18445.52 engages in both hydrogen bond and 

π-alkyl interactions with the carboxamide nitrogen and benzo[d]thiazol-2(3H)-one, 

respectively (Figure S4). Additionally, the oxygen and the nitrogen atom of the 

benzo[d]thiazol-2(3H)-one moiety formed hydrogen bonds with Tyr371.35 and Thr4127.39, 

respectively. It is also noted that the benzo[d]thiazol-2(3H)-one moiety and the carboxamide 

oxygen engaged in π-π stacking and hydrogen bond interactions with Tyr4087.35, respectively. 

Other π-alkyl interactions were observed for Val1905.39, Pro4057.32 and Ala185ECL2 (Figure S4).  
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Figure 4 The interaction energy spectrum of the two antagonists with key active site residues 
in D2DR and D3DR. (A) D2DR/R-VK4-40 complex, (B) D3DR/R-VK4-40 complex, (C) 
D2DR/Y-QA31 complex, and (D) D3DR/Y-QA31complex systems (Image prepared by 
author).  
 

On the other hand,	 the binding interactions of Y-QA31 with D3DR are quite dissimilar to 

D2DR. It is observed that Y-QA31 made favourable interactions with 15 residues in D3DR 

with energy values stronger than -0.6 kcal/mol (Figure 4D). These critical residues are Tyr361.39 

(-0.64), Val862.61 (-1.60), Leu892.64 (-0.70), Phe1063.28 (-1.15), Val1073.29 (-1.28), Val1113.33 (-

2.83), Cys18145.50 (-0.71), Ser18245.51 (-0.85), Ile18345.52 (-1.27), Val1895.39 (-1.22), Ser1935.43 

(-1.20), His3496.55 (-1.07), Tyr3657.35 (-0.94), Ser3667.36 (-0.61) and Thr3697.39 (-1.35). The 

interaction energies are structurally consistent with the π−π interactions of Phe1063.28, and 

Tyr3657.35 with the benzo[d]thiazol-2(3H)-one group as well as the π-alkyl interactions of 

Val862.61 Val1113.33 Ile18345.52 Val1895.39 and His3496.55 with the benzo[d]thiazol-2(3H)-one 

and 1-(2-methoxyphenyl)piperazinyl moieties (Figure S5). Additionally, 1-(2-

methoxyphenyl)piperazinyl group further engaged in a π-sulphur and π-π interactions with 

Cys1143.36 and Phe3466.52, respectively. It is worth highlighting that Y-QA31 interacts with six 

D3DR residues via hydrogen bonding, including Tyr361.39, Asp1103.32, Ser3667.36, Thr3697.39, 
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Tyr3737.43, and His3496.55 (Figure S5). The oxygen and the nitrogen atom in the 

benzo[d]thiazol-2(3H)-one moiety constantly engaged in hydrogen bonding with Tyr361.39 and 

Tyr3737.43, respectively. Additionally, Ser3667.36 and Thr3697.39 made hydrogen bond contacts 

with the benzo[d]thiazol-2(3H)-one moiety (Figure S5). The carboxamide nitrogen was 

observed to make constant salt bridge interactions with Asp1103.32, which is critical for high-

affinity inhibitor binding of aminergic GPCRs. The binding of Y-QA31 at D2DR engaged in 

more interactions with residues, mainly in the TM5 and TM6 domains. In contrast, Y-QA31 

made significant interactions with residues in the TM3, ECL2, and TM7 domains of D3DR. 

However, a few common interactions were observed for residues such as Val5.39, Ser5.43, and 

His6.55 in both receptors.   

 

3.6 Conformational analyses upon ligand binding  

The Cα root mean square deviation (RMSD) values were calculated from initial structures to 

access the dynamic stability and convergence of the MD simulations for the unbound and 

bound systems. The RMSD of the Cα atoms of the apo and ligand-receptor complexes for each 

system conducted in duplicate runs is shown in Figure S6 and Table S2. Convergence were 

generally observed after 250 ns of the simulation with average RMSDs less than 3.0 Å.    

The radius of gyration (RoG) was computed to obtain a local (binding site residues within 8 Å 

of the inhibitor) and global assessment of the distribution of the receptor compactness. The 

radius of gyration of the receptor-ligand complex is a measure of how compact a protein is 

upon ligand binding (lower Rg values represent higher protein compactness) (Tanwar et al., 

2017). The analysis of the simulated systems showed lower average binding pocket RoG values 

of 5.98 ± 0.39 Å and 5.58 ± 0.37 Å for R-VK4-40 and Y-QA31 binding at D3DR compared 

with the observed 10.52 ± 0.10 Å, and 10.72 ± 0.14 Å for R-VK4-40 and Y-QA31 binding at 

D2DR, respectively The unbound binding pocket RoG were relatively higher than the bound 

conformation with values of  12.77 ± 0.17 Å and 12.42 ± 0.17 Å for D2DR and D3DR, 

respectively (Figure 5A and Table S2). The binding pockets of the systems showed distinct 

compactness compared to the entire bound and unbound systems (Figure 5C and Table S2). 

The predicted results suggest that R-VK4-40 and Y-QA31 induced a much compact binding 

pocket when bound to D3DR than when bound D2DR. The comparative analyses suggest a 

wider configurational binding site cavity conformation at D2DR, resulting in weaker binding 

of R-VK4-40 and Y-QA31 compared to when bound at D3DR.  
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Figure 5 The radius of gyration of the binding pocket (A) and entire system (C);  and the 
solvent accessible surface area of the binding pocket (B) and the entire system (D) for D2DR 
and D3DR as a function of simulation time (Image prepared by author). 
 

The accessibility of the binding site cavity to the solvent upon antagonist binding was further 

analysed. In general, decreasing SASA value corresponds to increasing hydrophobic 

interactions. The trend of solvent accessible surface area (SASA) profiles was similar to the 

Rg profiles. The average D2DR binding pocket SASA values for R-VK4-40 and Y-QA31 

complex were 2090.52 ± 143.14 Å2, 2166.47 ± 157.98 Å2, respectively; however, a 

significantly lower average SASA value of 153.63 ± 35.46 Å2, 94.15 ± 35.65 Å2 was observed 

for R-VK4-40 and Y-QA31 respectively at D3DR binding site. The average SASA values for 

the unbound D2DR and D3DR binding pocket were 3699.43 ± 166.47 Å2 and 3439.40 ± 152.35 

Å2, respectively, which were higher than the bound systems (Figure 5B and Table S2). Thus, 

R-VK4-40 and Y-QA31 engage in stronger nonpolar interactions with D3DR hydrophobic 

binding site residues compared with D2DR binding pocket. However, the difference in the 

computed average SASA values for the entire receptor in the bound and unbound 

conformations (Figure 5D and Table S3) were not highly significant as the binding pocket.   

 

3.7 Conformational clustering and principal component analysis (PCA) 

Principal component analysis (PCA) was performed to understand the dynamic behaviour of 

the receptors when inhibited by the selected antagonists. PCA captured the dominant motion 

extracted from a large number of conformations(Sittel et al., 2014). The eigenvectors of the 
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covariance matrix were used to describe the overall coordinated movement of the Cα atoms, 

which relates to the coincident eigenvalues.  

In R-VK4-40 binding at D2DR and D3DR, the top 20 principal components (PCs) accounted 

for 82.3% and 74.9% of the total variance in the MD simulation, respectively. The contribution 

of the first two PCs to the total variance in D2DR/R-VK4-40 complex were 37.5% and 10.7%, 

respectively, whereas in D3DR/R-VK4-40 complex they accounted for 26.4% and 8.8%, 

respectively (Figure 6B and 6D). Similarly, the top 20 PCs for the Y-QA31 binding at D2DR 

and D3DR accounted for 81.8% and 74.4% of the total covariance, respectively (Figure 7B and 

7D). The contribution of PC1 and PC2 for D2DR/Y-QA31 complex were 32.8% and 9.9%, 

respectively, whereas accounting for 21.9% and 12.9%, respectively in D3DR/Y-QA31 

complex. Thus, the selective binding of R-VK4-40 and Y-QA31 at D3 dopamine receptor is 

associated with a relatively lower proportion of variance compared to their binding at the D2 

dopamine receptor. 

 
Figure 6 The projections of trajectories onto the first two principal components subspace and 
proportion of variance for D2DR/R-VK4-40 complex (A and B) and D3DR/R-VK4-40 
complex (C and D) (Image prepared by author).  
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The overall contributions of the Cα atomic fluctuations variance relative to the first, second 

and the remaining PCs are summarised in Table S4. Hence, the first two PCs (PC1 and PC2) 

were sufficient in providing a valuable description of the significant fluctuations in the 

conformational ensembles. The conformational transitions of the studied systems were 

analysed based on the first and second PCs in two-dimensional subspace (Figure 6A and 6C; 

Figure 7A and 7C). The continuous transition of colour, which changed from red to white to 

blue, indicate periodic transitions between these conformations. Two distinct conformational 

regions were sequentially explored by D2DR/R-VK4-40 which displayed distinct periodic 

jumps with a substantial energy barrier while D3DR/R-VK4-40 complex showed an 

overlapping and uniform exploring of conformational subspace with minimal energy barrier 

(Figure 6). Similarly, two main conformational subspaces were visited by D2DR/Y-QA31 and 

D3DR/Y-QA31complexes, however wider displacement were observed along PC1 for 

D2DR/Y-QA31 compared to D3DR/Y-QA31complex (Figure 7). The wide displacement is an 

indicative of large conformational space explored by D2DR/Y-QA31. Thus, the studied D3 

selective antagonists displayed large conformational changes mainly along PC1 at D2DR than 

at D3DR.  
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Figure 7 The projections of trajectories onto the first two principal components subspace and 
proportion of variance for D2DR/Y-QA31 complex (A and B) and D3DR/Y-QA31complex (C 
and D) (Image prepared by author).  
 

4 Discussion 

Drug binding selectivity and action are crucial in drug development that targets receptor 

subtypes. The availability of crystal structures provides an opportunity to identify structural 

differences at the atomistic molecular level between closely related GPCRs that can be 

exploited for novel drug design (Chien et al., 2010; Wang et al., 2018; Fan et al., 2020). 

However, the structural determining factors of inhibitor binding specificity at the D3 and D2 

dopamine receptors are highly subtle due to the nearly identical binding pocket residues. The 

discovery of selective and potent D2-like receptor inhibitors holds promise in the development 

of next-generation antipsychotic drugs in the treatment of neurological disorders (Holmes et 

al., 2004; Heidbreder & Newman, 2010; Xiao et al., 2014; Moritz et al., 2018). Herein, we 

employed the crystal structures of D2 dopamine and D3 dopamine receptors to investigate the 
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structural basis and atomistic binding mechanistic of two selective D3 antagonists at D3 over 

D2 dopamine receptors.   

The structural and physical properties of ligand binding pockets are closely associated with the 

ligand-binding affinities (Li et al., 2015; Smith et al., 2012). Bitopic antagonists are depicted 

by two pharmacophores, a primary and secondary pharmacophore connected through a linker. 

According to a previous study, the antagonistic activities of these compounds is more 

pronounced against D3 dopamine receptor relative to D2 dopamine receptor (Chien et al., 2010). 

The crystal structure of D3DR revealed an extended binding pocket (EBP) above the 

orthosteric binding pocket (OBP), where one of the bitopic pharmacophores interacts with 

TM2, TM3 and TM7 (Chien et al., 2010). In the predicted binding modes of R-VK4-40 and Y-

QA31, the indole moiety and the 1-(2-methoxyphenyl)piperazinyl moiety of R-VK4-40 and Y-

QA31 extended deep into the OBP of D2DR defined by TM6, TM5 and TM3 side chains, 

respectively. 

On the other hand, the interaction patterns of R-VK4-40 and Y-QA31 extend higher above the 

OBP into the EBP, adopting a shallow binding mode at D3DR, making significant interactions 

with residues in the TM3 and TM7 domains. Newman and colleagues studied a series of D3DR 

bitopic selective 4-phenylpiperazine-substituted compounds. They found that the efficacy of 

these compounds depends on their binding mode in the OBP, whereas selectivity arises from 

their different interactions within the SBP (Newman, Beuming, et al., 2012). The longer linker 

between the binding moieties of R-VK4-40 and Y-QA31 enabled their binding at both the EBP 

and the OBP of D3DR (Heidbreder & Newman, 2010). The favourable flexibility of bitopic 

compounds seems to be conferred by the tetramethylene linker resulting in higher 

D3DR/D2DR selectivity (Newman, Beuming, et al., 2012). 

Identifying the differences in the binding pocket dynamics of closely related receptor subtypes 

provides information that may assist in the design of subtype selective ligands (Latorraca et al., 

2017). We further investigated the antagonist effect on the conformational dynamics 

(compactness and solvent accessibility) of D2DR and D3DR binding/active sites. These 

provide information on how the different inhibitors perturb the intrinsic dynamics of the 

binding site of the antagonist-bound complexes. The interactions of R-VK4-40 and Y-QA31 

at D3 dopamine receptor binding site is significantly associated with a lower average SASA 

and Rg values than at D2DR binding site. The radii of gyration within the binding pockets of 

D3DR reveals a more compact binding site with less accessibility to solvent compared to 

D2DR binding site. The observed binding sites conformational dynamics suggests that the 

binding of R-VK4-40 and Y-QA31 at D3DR yields a more compact ligand-receptor complex 
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with increased hydrophobic interactions compared to D2DR. This conformational change in 

D3DR binding site may result in the more potent inhibitor binding mode with a higher binding 

affinity. The relatively high hydrophobic interactions exhibited by R-VK4-40 and Y-QA31 at 

D3DR are consistent with an earlier report that hydrophobic interactions, particularly with TM7 

are significantly involved in the binding of D3DR selective bitopic compounds at the EBP of 

D3DR (Newman, Beuming, et al., 2012).  

The calculated binding free energies successfully predicted the higher binding affinities of R-

VK4-40 and Y-QA31 at D3 dopamine receptor over the D2  dopamine receptor. It is worth 

noting that, the selectivity of R-VK4-40 and Y-QA31 at D3DR over D2DR is principally 

contributed by the van der Waals interactions, enthalpic and entropic energy contribution 

difference. The selective binding of the selective antagonists (R-VK4-40 and Y-QA31) at 

D3DR showed higher enthalpic interaction energy contribution while inducing a relatively 

favourable entropic contribution to their total binding free energies when compared to their 

binding at D2DR. Generally, the entropy change upon ligand binding may arise from an 

alteration of the conformational flexibility of the binding associates, a decrease in the rotational 

and translational degrees of freedom, as well as from the restructuring of their solvation shells 

upon binding (Bezerra et al., 2012). Desolvation effects are usually considered to drive a 

favourable entropic contribution to the total binding free energy as the burial of hydrophobic 

surfaces results in the displacement of binding site water molecules into the bulk solvent 

(Bezerra et al., 2012). The relatively high hydrophobic interactions (lower binding pocket 

solvent accessible surface area) displayed by R-VK4-40 and Y-QA31 at D3DR compared to 

D2DR may explain their relatively favourable entropic contribution. Also, Yildirim and 

Colleagues found that an increase in the conformational entropy upon ligand (pollutant) 

binding was associated with TPK biomolecules undergoing large conformational changes 

(Yildirim et al., 2016). The clustering and principal component analyses indicate that the 

selective binding of R-VK4-40 and Y-QA31 at D2DR is associated with a higher proportion 

of variance and more substantial conformational changes along PC1 relative to D3DR. The 

increase in conformational change at D2DR from PCA is observed to correlate with the relative 

increase in conformational entropy at D2DR. 

The presence of water molecules in a hydrophobic enclosed pocket is less stable than the bulk 

water molecules due to less favourable enthalpy and/or entropy, and the ability of a ligand to 

displace these high-energy waters has been shown to affect selectivity (Beuming et al., 2009) 

and improve binding affinity (Higgs et al., 2010). In a WaterMap analysis to characterise the 

distribution of hydration sites in the EBP of D3DR, Newman and Colleagues found that several 
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high-energy water molecules were continuously positioned in the EBP of both D2DR and 

D3DR. In contrast, less high-energy waters were found at the TM1, TM2 and TM7 interface 

(Newman, Beuming, et al., 2012). The authors observed that the indole moiety of the D3DR-

selective bitopic ligand (Compound 2) occupied the EBP region where several high-energy 

water molecules were displaced, which was consistent with compound’s higher affinity for 

D3DR over D2DR (Newman, Beuming, et al., 2012).  

The binding of R-VK4-40 and Y-QA31 made salt bridge interaction with the conserved 

Asp1103.32, which is critical for inhibitors displaying high affinity to GPCR aminergic 

subfamily (Shi & Javitch, 2002). The ECL2 has been posited to be important in the selective 

targeting between D3 and D2 dopamine receptors since it is highly non-conserved (Heidbreder 

& Newman, 2010). Three critical ECL2 residues (Cys18145.50, Ser18245.51, and Ile18345.52) of 

D3 receptor were observed to make significant interactions with Y-QA31. Similarly, two ECL2 

residues (Ser182 and Ile183) of D3 dopamine receptor were also found to make critical 

interactions with R-VK4-40. The critical D3DR residue (Ser18245.51) is non-conserved at 

D2DR (Ile18245.51). Thus, Ser18245.51 of the ECL2 region of D3 dopamine receptor is a possible 

critical residue involved in the D3/D2 subtype selectivity of the studied antagonists. Feng and 

colleagues found Cys18145.50 and Ser18245.51 of the ECL2 of D3DR to make important 

interaction with the D3 selective antagonist R-22 (Feng et al., 2012). The non-conserved residue 

Tyr361.39 of D3DR, which corresponds to Leu411.39 in D2DR formed a critical hydrogen bond 

and made more substantial interaction energy with Y-QA31 at D3DR which were not observed 

at D2DR. The findings highlight the essential differences in the interactions of R-VK4-40 and 

Y-QA31 at the binding pocket of D3DR and D2DR.  

 

5 Conclusion 

This study aimed at probing the molecular mechanistic underlying the selective binding of two 

antagonists (R-VK4-40 and Y-QA31) toward D3DR over D2DR using conventional molecular 

dynamics simulations in a POPC lipid bilayer environment. The results highlighted in this 

study show how R-VK4-40 and Y-QA31 achieve selective interaction at D3 dopamine receptor 

over D2 dopamine receptor. The results reveal that conformational alterations in D2DR were 

more prominent compared to D3DR. The dynamic binding mode and the per-residue energy 

decomposition enabled the identification of residues responsible for the differential binding 

affinities at D2DR and D3DR. The estimated binding free energies not only corroborated with 

the experimental binding affinities but also indicate that an increase in van der Waals 

interactions and a relative decrease in entropy contribution are the essential factors that underlie 
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high-selectivity and affinity of the antagonists for D3DR relative to D2DR. We expect that our 

study may assist in gaining further insight into the selective mechanistic of D3DR antagonists 

and provide vital information towards the design and identification of new selective antagonists 

of D3DR. 
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Table S1 Description of the simulated systems parameters. 

Simulated Systems 
 

Systems 
Bound 
ligand 

POPC 
lipid 

molecules 

K+ 

ions 
Cl- 

ions 
Water 

molecules 
Number 
of atoms 

Duration 

of 

Simulation 

D2DR/APO - 180 41 51 15621 75477 600 ns x 2 
D2DR/R-VK4-40 R-VK4-40 180 41 51 15580 75417 600 ns x 2 
D2DR/Y-QA31 Y-QA31 180 41 51 15666 75671 600 ns x 2 
D3DR/APO - 180 43 50 16504 78031 600 ns x 2 
D3DR/R-VK4-40 R-VK4-40 180 43 50 16529 78169 600 ns x 2 
D3DR/Y-QA31 Y-QA31 180 43 50 16507 79099 600 ns x 2 
 

Table S2 Average root mean square deviations (RMSD) of the duplicated simulation run. 

Simulated 

Systems 

RMSD (Å) 

Run1 Run2 

D2DR/APO 2.54 ± 0.78 2.23 ± 0.23 

D2DR/R-VK4-40 1.91 ± 0.31 1.62 ± 0.20 

D2DR/Y-QA31 2.16 ± 0.31 2.20 ± 0.24 

D3DR/APO 1.68 ± 0.23 1.10 ± 0.24  

D3DR/R-VK4-40 1.85 ± 0.21 1.76 ± 0.32 

D3DR/Y-QA31 1.64 ± 0.27 1.67 ± 0.18 

 

Table S3 The average molecular properties of the R-VK4-40 and Y-QA31 binding at D2 and 
D3 receptor binding pocket and entire system as a function of the 600 ns simulation time.  

Complexes 

 

Entire System Binding Pocket 

Rg ± SD 

(Å) 

SASA ± SD 

(Å
2
) 

Rg ± SD 

(Å) 

SASA ± SD 

(Å
2
) 

D2DR/APO 20.32 ± 0.09 16431.28 ± 342.10 12.77 ± 0.17 3699.43 ± 166.47 

D3DR/APO 20.11 ± 0.07 15899.66 ± 286.67  12.42 ± 0.17   3439.40 ± 152.35 
D2DR/R-VK4-40 20.21 ± 0.09 16349.10 ± 327.50 10.52 ± 0.10 2090.52 ± 143.14 

D3DR/R-VK4-40 20.08 ± 0.08 15359.26 ± 361.13 5.98 ± 0.39 153.63 ± 35.46 

D2DR/Y-QA31 20.29 ± 0.07 15707.97 ± 262.76 10.72 ± 0.14  2166.47 ± 157.98 
D3DR/Y-QA31 20.07 ± 0.11 15325.34 ± 305.82 5.58 ± 0.37    94.15 ± 35.65 

 

Table S4 The projections of the distribution of the simulated systems onto the subspace defined 
by the most significant principal components 

Simulated systems Variance in Cα atomic fluctuations (%) 

 PC1 PC2 PC3-PC20 

D2DR/R-VK4-40 37.52 10.65 <8.84 

D3DR/R-VK4-40 26.40 8.82 <7.74 

D2DR/Y-QA31 32.82 9.85 <8.36 

D3DR/Y-QA31 21.89 12.94 <6.21 
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Figure S1 Redocking of Risperidone and Eticlopride at D2 dopamine receptor (A) and D3 

dopamine receptor (B), respectively. Crystallographic and redocked ligand binding 
conformation in yellow and magenta colour, respectively (Image prepared by author).   
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Figure S2 Representative binding mode and binding interaction of R-VK4-40 at D2DR 
extracted over the course of the simulation (Image prepared by author).  
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Figure S3 Representative binding mode and binding interaction of R-VK4-40 at D3DR 
extracted over the course of the simulation (Image prepared by author).  
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Figure S4 Representative binding mode and binding interaction of Y-QA31 at D2DR extracted 
over the course of the simulation (Image prepared by author).  
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Figure S5 Representative binding mode and binding interaction of Y-QA31 at D3DR extracted 
over the course of the simulation (Image prepared by author).  
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Figure S6 The Root-mean-square deviation (RMSD) of Cα atoms plots of duplicate 600 ns 
simulation for D2DR unbound (A), D2DR/R-VK4-40 bound (B), D2DR/Y-QA31 bound (C), 
D3DR unbound (D), D3DR/R-VK4-40 bound (E), and D3DR/Y-QA31(F) as a function of 600 
ns simulation time (Image prepared by author). 
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Abstract 

Introduction: Blocking Human Immunodeficiency Virus type 1 (HIV-1) entry via C-C 

chemokine receptor 5 (CCR5) inhibition has remained an essential strategy in HIV drug 

discovery. This underlies the development of CCR5 blockers, such as Maraviroc, which, 

however, elicits undesirable side effects despite its potency.  

Background: Recent lead optimization efforts led to the discovery of novel 1-heteroaryl-1,3-

propanediamine derivatives; Compd-21 and -34, which were ~3 times more potent than 

Maraviroc, with improved pharmacokinetics. However, atomistic molecular interaction 

mechanism of how slight structural variance between these inhibitors significantly affects their 

binding profiles have not been elucidated.  

Method: This study employed explicit lipid bilayer molecular dynamics (MD) simulations, 

and advance analyses to explore these inhibitory discrepancies.  

Results: Findings revealed that the thiophene moiety substitution common to Compd-21 and -

34 enhanced their CCR5-inhibitory activities due to complementary high-affinity interactions 

with Trp862.60, Tyr1083.32, Tyr2516.51, Glu2837.39. These cumulatively accounted for their 

ΔGbind, which were higher than Maraviroc. Binding dynamics further revealed that the 

compounds mediated direct competitive inhibition at CCR5 by blocking the gp120 V3 loop. 

Furthermore, constituent tropane and triazole moieties in the compounds commonly engaged 

in interactions with Glu2837.39 and Trp862.60, respectively. Structural analyses also revealed 

that both Compd-21 and -34 elicited distinct internal dynamic effect on CCR5 relative to 

Maraviroc.   

Conclusion: Structural modifications at the thiophene substituent and the addition of new 

functional groups to the triazole ring may enhance inhibitor competition with gp120 V3-loop. 

Findings herein highlighted would contribute to future structure-based design of inhibitors of 

HIV-1 CCR5 with improved potencies. 

Keywords: G protein-coupled receptor, HIV-1, Maraviroc, lipid bilayer, C-C chemokine 

receptor 5 (CCR5), Molecular dynamics simulations, 1-heteroaryl-1,3-propanediamine 
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1. Introduction  

Human immunodeficiency virus type 1 (HIV-1) continues to threaten the quality of life, being 

the causal agent of acquired immunodeficiency syndrome (AIDS). Despite the progress made 

in the prevention of the HIV/AIDS epidemic evidenced by the development of various 

treatment strategies, the disease remains a global health threat.  Different drugs and inhibitors 

have been developed over the past years toward the inhibition of  HIV-1 via viral proteins 

targeting such as gp41, gp120, integrase, protease, and reverse transcriptase (Dyda et al., 1994; 

Huff, 1991; Kohlstaedt et al., 1992). However, there is the need for the development of novel 

HIV treatment drugs due to incidences of drug resistance easily triggered by mutations in these 

targets (Wensing et al., 2019).   

G protein-coupled receptors (GPCRs) represent critical therapeutic intervention targets 

towards the development of new drugs due to their varied functions in many various cell 

responses (Rosenbaum et al., 2009). C-C chemokine receptor 5 (CCR5) is a member of the 

GPCRs family involved in immune function regulation (Flanagan, 2014; Sorce et al., 2011; 

Oppermann, 2004). In 1996, the chemokine receptors CXCR4 and CCR5 were found to be co-

receptors for HIV-1 (Berger et al., 1999). HIV-1 envelope protein (Env) is made up of the 

gp160 trimeric (gp160)3, which cleaves with three fragments of gp41 (fusion) and gp120 

(receptor binding). The fusing of HIV-1 Env with viral and cell membrane enables host cells 

entry by the virus (Harrison, 2008). gp120 sequentially binds to its primary receptor CD4 and 

a co-receptor, thereby inducing conformational changes that result in gp120 dissociation and 

gp41 refolding (Harrison, 2008).  

CCR5 represents the major HIV-1 co-receptor during entry into CD4+ T-cells (Berger et al., 

1999). This significant role played by CCR5 in HIV-1 infection was defined when a naturally 

occurring mutation in the CCR5 gene (CCR5-Δ32) mediated resistance to HIV-1 disease 

(Allers et al., 2011). Compared with HIV-1 targets such as reverse transcriptase, protease, 

gp120, integrase, and gp41, the CCR5 receptor has been identified to have a low probability of 

mutations. Antiretroviral therapy (ART) administration slows the progressing of  HIV to AIDS 

by decreasing viral loads in affected individuals (Detels et al., 1998; Peng et al., 2018). 

However, the current highly active ARTs (HAART) are associated with various setbacks, 

which include viral resistance, drug-drug interactions, and unwanted side effects (Günthard et 

al., 2014).  Thus, the ability to prevent HIV-1 entry into host cells represents an attractive 

therapeutic approach in blocking HIV-1 infection and replication (M Gibson & J Arts, 2012). 

The quest to develop inhibitors capable of blocking HIV-1 entry by inhibiting the co-receptor 
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CCR5 lead to the identification of the first CCR5 HIV-1 entry drug Maraviroc, which was 

approved in 2007 by the Food and Drug Administration (FDA) (FDA, 2007). Maraviroc is the 

only marketed CCR5 drug but with limited prescription due to identified factors such as its 

drug-drug interactions (especially when co-administrated with CYP3A4 inhibitors), CYP450 

inhibition, and viral resistance (Garcia-Perez et al., 2015; Peng et al., 2018). The rapid 

worldwide increase in patients diagnosed with HIV, therefore, necessitates the discovery of 

novel therapeutics for HIV treatment with fewer side effects and better efficacy.  

Recently, a new series of 1-Heteroaryl-1,3-propanediamine derivatives [N-((S)-3-(exo-3-(3-

Isopropyl-5-methyl-4H-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]octan-8-yl)-1-(thiophen-2-

yl)propyl)cyclopentane Carboxamide (Compd-21) and 4,4-Difluoro-N-(3-((1R,3S,5S)-3-(3-

isopropyl-5-methyl-4H-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]octan-8-yl)-1-(thiophen-3-yl)-

propyl)cyclohexane-1-carboxamide (Compd-34)] (Peng et al., 2018) were synthesized as 

CCR5 antagonists (Fig. 1). These inhibitors have displayed lower cytotoxicity, exceptional in-

vitro anti-HIV-1 activity, and tolerable pharmacokinetic profile compared with Maraviroc 

(Peng et al., 2018). The crystal structure of Maraviroc in complex with CCR5 has previously 

been reported (Tan et al., 2013). Previous computational studies on CCR5 have been done to 

probe the interaction of Maraviroc with CCR5 through Molecular dynamics (MD) (Bai et al., 

2014; Salmas et al., 2015), identify potential CCR5 inhibitors via pharmacophore-based 

screening and MD (Wang et al., 2016) and MD studies on CCR5 dimerization (Zhang et al., 

2019). However, atomistic molecular details of the interaction mechanisms of how slight 

structural variance between these inhibitors (Compd-21, Compd-34, and Maraviroc) 

significantly affects their binding profiles at the CCR5 receptor has not been elucidated. Such 

an atomistic understanding would be beneficial in the identification of molecular properties 

and receptor interactions, which can be useful in the design of more effective HIV-1 

compounds targeting CCR5 receptor. 
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Fig. (1). 2D Chemical structures of the selected HIV-1 entry inhibitors used as co-crystallized 
inhibitors in the simulated complex systems. Key functional group variation highlighted in 
dashed circles (Image prepared by author).  
 
In this present work, lipid bilayer molecular dynamics (MD) simulations in ionized explicit 

solvent, binding energy interactions, and conformational analyses have been employed to 

investigate the atomistic molecular basis for the higher inhibitory potency possessed by 

Compd-34 and Compd-21 relative to Maraviroc. Their respective molecular binding 

interactions provide mechanistic insights into their receptor recognition and shows how 

understanding ligand-receptor interaction and activation may eventually enable drug design at 

the CCR5 receptor for HIV treatment. This study provides novel insights into the structural 

determinants and interaction patterns that drive the differential binding profile of Maraviroc 

and the 1‑heteroaryl-1,3-propanediamine derivatives (Compd-34 and Compd-21) which have 

vital implications for the design of improved HIV-1 agents. 

 

2. Materials and Methods 

2.1. Starting Structures  

The initial coordinates for molecular dynamic simulations were obtained from the crystal of 

CCR5 bound to Maraviroc (PDB entry 4MBS), CCR5 bound to Compd-21 (PDB entry 6AKX) 

and CCR5 bound to Compd-34 (PDB entry 6AKY) (Berman et al., 2002). Maraviroc was 
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removed to obtain the apoprotein. The rubredoxin molecule was removed from the receptor 

and the intracellular loop 3 (ICL3) missing residues Cys2245.68, Arg225, Asn226, and Glu227 

were reconstructed and missing residues modelled using modeller (Webb & Sali, 2014) based 

on CCR5 sequence (UniProtKB ID: P51681). The thermostabilizing mutations (Cys581.60Tyr, 

Gly1634.60Asn, Ala2336.33Asp and Lys3038.49Glu) in the crystal structures were reverted to 

their wild types. 

 

 2.2. Ligand and Protein Preparations 

The Maestro LigPrep module (Schrödinger Release 2019-4, 2019) was used to generate 

ionization and tautomeric states of the ligands and minimized using OPLS3e force field. The 

Protein Preparation Wizard (Schrödinger Release 2019-4, 2019) was used to pre-process the 

protein using default parameters. Epik was used to generate ionization states at pH 7.0±4.0 and 

water molecules beyond 5 Å from the ligand deleted. The protein was subsequently refined by 

optimizing the hydrogen bonds and minimized using the OPLS3e force field. 

 

2.3. Membrane-protein complex system setup 

The simulated systems were assembled using the CHARMM-GUI membrane builder module 

(Jo et al., 2008) (http://www.charmm-gui.org/). The apo and inhibitor-complexed systems were 
embedded in a homogenous palmitoyl-oleoyl-phosphatidylcholine (POPC) lipid bilayer. The 

orientations of CCR5 Apo and CCR5 ligand complexes were aligned to the orientation of 

CCR5 in the membrane obtained from the Orientation of Protein Membranes (OPM) server 

(Lomize et al., 2006). The systems were then solvated using the TIP3P water model (Jorgensen 

et al., 1983), followed by a 0.15M concentration of KCl counterions for neutralization. (Fig. 2 

and Table 1). The simulated systems had an average dimension of 95 x 95 x 104 Å3. The 

charmmlipid2amber.py script was used in processing structure files in renaming lipid residues 

according to the Amber lipid14 force field. The two essential disulphide bonds between Cys20-

Cys269 and Cys101-Cys178 residues were maintained during topology and coordinate 

generation in tleap of Amber. 
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Table 1. Description of the simulated CCR5-Membrane systems parameters. 

Simulated Systems 
 

Systems 
Bound 
ligand 

POPC 
lipid 

molecules 

K+ 

ions 
Cl- 

ions 
Water 

molecules 
Number 
of atoms 

Duration 

of 

Simulation 

CCR5-34 Compd-34 190 47 64 17864 84039 400 ns 
CCR5-21 Compd-21 190 47 64 17837 83955 400 ns 
CCR5-MVR Maraviroc 190 46 63 17498 82944 400 ns 
CCR5-APO - 190 46 60 17473 82773 400 ns 

 

2.4. Molecular dynamics (MD) simulation protocols 

To explore the stability and conformation dynamics of the systems under study,  Molecular 

dynamics (MD) simulations were performed in an ionized explicit POPC lipid bilayer on 

Amber18 (Case et al., 2018). The GAFF force field (Sprenger et al., 2015) was used to generate 

force fields for the inhibitors. The protein and electrostatic potential distribution were obtained 

with the Amber force field FF14SB (Maier et al., 2015) and the Restrained Electrostatic 

Potential fit approach (RESP) (Bayly et al., 1993), respectively. The Lipid14 force field 

(Dickson et al., 2014) was used to describe the lipids. The coordinate and topology files for the 

simulations were generated with tleap software using the ff14SB, TIP3P, and lipid14 

forcefields with a box dimensions of 95 x 95 x 104 Å3.  

The systems were initially relaxed before the MD simulations by performing 10000 

minimization steps. The systems were then heated in isothermal-isochoric (NVT) ensemble 

from 0 K to 100 K using the Langevin thermostat (Larini et al., 2007) for 13 ps with harmonic 

restraint of 10 kcal mol−1 Å−2 applied on non-hydrogen atoms of lipid, ligand, and protein, with 

a 1.0 ps-1 collision frequency. A 130 ps heating in isothermal-isobaric (NTP) ensemble was 

performed for the systems starting at 100 K to 310 K with a pressure of 1 bar. Equilibration of 

the system was performed with a starting harmonic restraint of 5.0 kcal/mol/ Å2 on the protein 

and lowered by 1.0 kcal mol−1 Å−2  in a stepwise manner every 4 ns for a total of 20 ns at 310 

K under NTP ensemble. A subsequent 10 ns unrestrained equilibration was performed before 

production. Finally, 400 ns unrestrained MD simulations were run under NPT ensemble at 310 

K with SHAKE constraints for bonds with hydrogen. To prevent errors during the simulations, 

the skinnb parameter value was set at 5. A 2-fs time step was used in integrating the equation 

of motion during the production phase. The Langevin dynamic was used to regulate the 

temperature with a collision frequency of 5 ps−1, whereas the anisotropic pressure coupling 

with a pressure relaxation time of 1.0 ps used to control the pressure of the systems. The particle 
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mesh Ewald was used to treating long-range electrostatic interactions (Darden et al., 1993) 

under periodic boundary conditions with nonbonded interactions cut-off of 12 Å.  

2.4.1. Trajectory analysis 

To comprehend the structural as well as functional implications of the studied systems, various 

structural property analyses were performed as a function of time on the obtained trajectories. 

The Amber CPPTRAJ module (Roe & Cheatham, 2013) was used to analyse the generated 400 

ns trajectories. To assess the stability and conformational dynamics during the simulations, the 

root mean square fluctuation (RMSF), root mean square deviation (RMSD), the solvent-

accessible surface area (SASA), the radius of gyration (Rg) and secondary structure analysis 

(DSSP) were computed. Similarly, hydrogen bonds formed between the inhibitors and specific 

residues were calculated.  

 

Fig. (2). CCR5-ligand lipid bilayer system setup showing side view (left) and top view (right) 
of CCR5-inhibitor complex (CCR5 represented in a cyan cartoon and inhibitor in yellow 

sphere) embedded in an ionized solvated POPC lipid bilayer (POPC lipids, water, K+, and Cl- 

are depicted in grey wire, red, purple and green, respectively) (Image prepared by author).   
 

2.5. End-point interaction energy calculations 

The Molecular Mechanics-Generalized-Born Surface Area (MM-GBSA) approach is a widely 

used method in analysing relative binding energies protein-ligand complexes (Ylilauri & 

Pentikäinen, 2013; Chen et al., 2016; Sun et al., 2018). Various binding energy components 

such as the molecular mechanics potential energy (van der Waals and electrostatic energies), 

polar and nonpolar interaction energies were obtained for each CCR5-inhibitor complex. A 

total of 500 representative snapshots were extracted over the last 300 ns conformational 
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ensemble. The binding free energy (ΔGbind) is computed by the MM-GBSA approach via the 

set of equations below.  

ΔGbind = Gcomplex − (Greceptor + Gligand)  (1) 

       ΔGbind = Egas + Gsol − TΔS   (2) 

           Egas = Eint + Evdw + Eele   (3) 

               Gsol = Gpol + GSA               (4) 

                 GSA = SASA + b   (5)  

Where Gligand, Greceptor, and Gcomplex denote the relative free energies of the ligand, unbound 

protein, and protein-complex, respectively. The ΔGbind was decomposed into (equations 2 to 

5): the solvation energy term (Gsol) which is the sum of the polar (Gpol) and nonpolar (GSA) 

solvation terms; the gas-phase (Egas) energy contribution which is a summation of the 

nonbonded [van der Waals (Evdw) and electrostatics (Eele)] and the bonded [internal energy 

(Eint)] energy terms, and the entropy term (-TΔS). The conformational entropy contribution to 

the total binding free energy was calculated by normal mode analysis using 10 snapshots evenly 

extracted from the 500 snapshots.  

2.5.1 Decomposition of the overall interaction energy  

The total binding free energies were reduced into each residue contribution to identifying active 

site “hot spot” residues involved in the preferential binding of the novel inhibitors, using the 

MM-GBSA per-residue energy decomposition utility of Amber. 

 

2.6. Clustering and Principal Component Analysis (PCA) 

The principal component analysis (PCA) is routinely applied to MD trajectory analysis in 

reducing large-dimensional observations sets onto collective data. Obtaining principal 

components (PCs) for MD trajectories involves two key steps: 

(i) Covariance matrix (C) generation,  

Cij =  <  ( Xi - < Xi>) ( Xj - < Xj>) >          (1) 

(ii) The 3N x 3N covariance matrix C diagonalization that can be computed by 

eigenvalue decomposition (EVD) as,  

          C = VɅVT              (2) 

Where V denotes a matrix, which includes eigenvectors, and Ʌ, describes the eigenvalues 

contained in the diagonal matrix. The eigenvalues display the mean squared displacements 

(MSD) of the Cα atoms throughout the used eigenvector. The principal component analysis in 

this study was applied utilizing the Bio3D package in R (Grant et al., 2006). 
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2.7. Graphical tools used in the study 

Molecular visualizations were done with Chimera (Pettersen et al., 2004), Schrodinger 

Maestro(Schrödinger Release 2019-4, 2019), Origin software for plotting all graphs (Seifert, 

2014), the protein-ligand interaction profiler (Salentin et al., 2015) and Bio3D package in R 

(Grant et al., 2006) for PCA analysis. 

 

2.8. Transmembrane (TM) and Extracellular loops (ECL) residue numbering  

The superscripts assigned to each residue denote GPCRs Ballesteros-Weinstein numbering 

(Ballesteros & Weinstein, 1995) for the transmembrane domains and the GPCRdb (Isberg et 

al., 2016)  numbering for intracellular and extracellular loops.  

 

3. Results  

3.1. Phenyl → thiophen-2-yl (Compd-21) and thiophen-3-yl (Compd-34) substitutions 

improved binding affinities over Maraviroc. 

The key structural variation between Maraviroc and the novel series of 1-heteroaryl-1,3-

propanediamine derivatives (Compd-34, and Compd-21) is the substitution of the phenyl group 

in Maraviroc with a thiophen-2-yl and thiophen-3-yl moieties in Compd-21, and Compd-34, 

respectively. This substitution was observed to exhibit excellent in vitro anti-HIV-1 activity 

and improved pharmacokinetics (Peng et al., 2018). The interaction energies between the 

CCR5 and the selected inhibitors were evaluated to assess the mechanistic binding of Compd-

34, Compd-21 and Maraviroc at the active site of CCR5 using MM-GBSA method (Hou et al., 

2011; Sun et al., 2014; Chen et al., 2016). The estimated relative binding free energies and 

individual energy terms of Compd-34, Compd-21, and Maraviroc are listed in Table 2. The 

computed binding energies (ΔG) (mean ± SEM) obtained for Maraviroc, Compd-21 and 

Compd-34 were -31.45 ± 2.2 kcal.mol−1, -41.15 ± 1.0 kcal.mol−1, and -44.94 ± 0.9 kcal.mol−1, 

respectively. These energy values correlate in their ranking order with the experimentally 

reported IC50 values of 8.0 ± 2.7 nM for Maraviroc, 3.1 ± 0.2 nM for Compd-21, and 3.0 ± 0.2 

nM for Compd-34. Compd-21 and Compd-34 relatively displayed more favourable binding 

than Maraviroc, which could be attributed to the stronger interactions elicited by Compd-21 

and Compd-34 at CCR5 binding sites, as would be explained in subsequent sections. Aside 

from the ability for MM-GBSA to rank inhibitor in the order of their binding free energies, it 

also provides detail understanding of the inhibitor-target binding process (Yang et al., 2011) 

by decomposing the total binding free energies into their components such as van der Waals, 
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electrostatic, polar and nonpolar interactions. In all three inhibitor-complexes, a favourable van 

der Waals, polar, and nonpolar solvation energy terms were observed for inhibitor binding to 

CCR5; however, the overall electrostatic interactions disfavoured complex formation in all the 

complex systems. Furthermore, entropy contribution to the total binding energy was observed 

to be more unfavourable in Maraviroc compared to Compd-34 and Compd-21. It is evident 

from Table 2 that van der Waals energy (ΔEvdW) most favoured the binding of Compd-21 and 

Compd-34 to CCR5 receptor compared with Maraviroc. Thus, van der Waals interaction is 

most important in stabilizing the CCR5-inhibitor complexes.  

 

Table 2. MM-GBSA binding free energy analysis [(mean ± SEM) kcal·mol−1] of CCR5-
inhibitor complexes. 

Energy 
Composition 

CCR5 Antagonists 
Compd-34 Compd-21 Maraviroc 

ΔEvdW  -69.03 ± 0.2  -65.61 ± 0.2 -63.78 ± 0.2 
ΔEelec 162.44 ± 1.2    176.99 ± 1.2 181.59 ± 1.2 
ΔEpolar   -156.48 ± 1.2   -174.57 ± 1.1 -172.47 ± 1.0 
ΔEnonpolar    -8.10 ± 0.0     -7.47 ± 0.0 -7.79 ± 0.0 
ΔEMM    93.41 ± 1.2   111.39 ± 1.2 117.80 ± 1.2 
ΔEsol -164.58 ± 1.2  -182.05 ± 1.1 -180.27 ± 1.1 
ΔH   -71.17 ± 0.2    -70.66 ± 0.2 -62.47 ± 0.3 
-TΔS    26.23 ± 1.1     29.51 ± 1.2 31.02 ± 2.5 
ΔGbind   -44.94 ± 0.9    -41.15 ± 1.0 -31.45 ± 2.2 
Exp(IC50)        3.0 ± 0.2          3.1 ± 0.2 8.0 ± 2.7 
ΔEvdW = van der Waals energy; ΔEele = Electrostatic energy; ΔEpolar = Polar 

solvation energy; ΔEnonpolar = Nonpolar solvation energy; EMM = Vacuum 

potential energy; ΔEsol = Solvation energy; ΔGbinding = Total binding free 
energy; Exp = experimental inhibition (IC50 in nM).  

 

3.2. High-affinity interactions at the gp120 V3 loop recognition site account for disparate 

binding among Compds-21, -34 and Maraviroc 

To unravel the hotspot residues that may contribute to the higher potency of Compd-21 and 

Compd-34 over Maraviroc, the estimated ΔGbind energy values were decomposed into 

individual interacting amino acids contributions using the MM-GBSA per-residue energy 

decomposition approach. The pairwise interaction energy contribution of CCR5 active site 

residues to the binding of the studied inhibitors is presented in Fig. 3a. According to the residue 

interaction energy data, the major residues that contributed significantly to the inhibitory 

activity of the studied inhibitors with average energy values ≥ -1.0 kcal.mol−1 were: Trp862.60 

(-2.86), Tyr1083.32 (-3.22), Phe1093.33 (-2.74), Ile1985.42 (-1.31), Tyr2516.51 (-1.0), Gln2807.36 

(-1.02), Thr2847.40 (-1.59) and Met2877.43 (-1.0) for Compd-34; Trp862.60 (-3.69), Tyr1083.32 (-
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3.51), Phe1093.33 (-1.88), Phe1123.36 (-1.25), Ile1985.42 (-1.56), Tyr2516.51 (-2.37), Leu2556.55 (-

1.04), and Met2877.43 (1.00) for Compd-21; whereas Trp862.60 (-1.58), Tyr1083.32 (-2.207), 

Phe1093.33 (-2.08), Phe1123.36 (-1.0), Ile1985.42 (-1.48), and Gln2807.36 (-1.0) for Maraviroc. 

Most of the binding site residues of CCR5 critical for the binding of gp120 V3-loop such as 

Trp862.60, Tyr1083.32, Phe1093.33,  and Tyr2516.51 made stronger interactions with the 1-

heteroaryl-1,3-propanediamine derivatives (Compd-21 and Compd-34) than with Maraviroc.  

 

 

Fig. (3). Per-residue interaction energy decomposition (a) and hydrogen bond occupancy plot 
(b) for Compd-21, Compd-34 and Maraviroc at CCR5 binding site. The dashed line denotes 
residues with contribution from -1.0 kcal.mol−1 (Image prepared by author). 
 
The MD trajectories were further analysed to gain an understanding of the dynamic variation 

in the number and strength of hydrogen bond formation throughout the simulation (Table 3 and 

Fig. 3b). The inhibitors were stabilized in the active site of CCR5 receptor via hydrogen bonds 

involving: Glu2837.39, Gln2807.36, Tyr2516.51, Thr2847.40, and Tyr371.39 (with Compd-34); 

Glu2837.39, Tyr2516.51, Tyr371.39 and Gln280 (with Compd-21); and Glu2837.39, Tyr371.39 and 

Tyr2516.51, (with Maraviroc). In the CCR5-Maraviroc system, the protonated nitrogen of the 

tropane linker moiety maintained the most stable hydrogen bond/salt-bridge interaction with 

Glu2837.39 (54.77 % occupancy). The triazole moiety also maintained a hydrogen bond with 

Tyr371.39 (26.20 % occupancy) whereas the carboxamide nitrogen formed a stable hydrogen 

bond with Tyr2516.51 (25.87 % occupancy). The dynamic hydrogen bond analysis indicates that 

the observed two hydrogen bond formed by Thr1955.39 and Thr2596.59 with one of the 

cyclohexane ring fluorines in the crystal structure(Tan et al., 2013) are weak interactions which 

disappeared at the initial stage of the MD simulation.  
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Table 3. Hydrogen bond interactions between CCR5 with Compd-34, Compd-21, and 
Maraviroc. 

Ligands H-Acceptor H-Donor Donor Occupancy 
(%) 

Distance 
(Å) 

Angle 
(o) 

 

 

Compd-34 
 

GLU283-OE1 
GLN280-OE1 
TYR251-OH 
THR284OG1 
Compd-34-N4 

Compd-34-HN2 
Compd-34-HN4 
Compd-34-HN52 
Compd-34-HN3 

TYR37-HH 

Compd-34-N2 
Compd-34-N4 
Compd-34-N5 
Compd-34-N3 

TYR37-OH 

97.46 
50.92 
32.42 
14.97 
6.63 

2.7 
2.8 
2.9 
2.9 
2.9 

164 
158 
147 
148 
148 

 

Compd-21 

GLU283-OE1 
TYR251-OH 
TYR37-OH 

Compd-21-N2 

Compd-21-HN1 
Compd-21-H21 
Compd-21-H44 
GLN280-HE21 

Compd-21-N4 
Compd-21-N5 
Compd-21-N2 
GLN280-NE2 

99.49 
56.74 
30.01 
6.46 

2.7 
2.8 
2.8 
2.9 

164 
160 
151 
157 

 

 Maraviroc 

GLU283-OE2 
TYR37-OH 
TYR251-OH 

Maraviroc-HN2 
Maraviroc-HN4 
Maraviroc-HN52 

Maraviroc-N2 
Maraviroc-N4 
Maraviroc-N5 

54.77 
28.34 
25.87 

2.7 
2.9 
2.8 

160 
161 
152 

 

The analysis of hydrogen bond occupancy in CCR5-Compd-34 complex also showed a 

populated and more substantial (97.46 % occupancy) salt-bridge interaction between 

Glu2837.39 and the protonated nitrogen of the tropane moiety at the binding pocket. It was also 

observed that Gln2807.36 and Tyr2516.51 formed stable H-bonds with occupancy of 50.9% and 

32.4%, respectively, whereas Tyr371.39 engaged in a weaker hydrogen bond with the triazole 

nitrogen at a 6.5% occupancy. The possible formation of an additional two hydrogen bonds by 

one of the fluorine in the cyclohexane moiety of Compd-34 with Thr2596.59 and Thr1955.39 as 

reported in the static crystallographic structure(Peng et al., 2018) were lost during the 

simulation. Finally, in the CCR5-Compd-21 complex system, the nitrogen in the tropane group 

engaged in a powerful salt-bridge interaction with Glu2837.39 (99.5%). A stable hydrogen bond 

with an occupancy of 56.7% is formed between the nitrogen of the carboxamide group and 

Tyr2516.51. Furthermore, the triazole ring nitrogen also interacted with Tyr371.39 and Gln2807.36 

via hydrogen bonds with 30.0% and 6.5% occupancy, respectively.  

 

In the dynamic binding mode of CCR5-34 complex structure (Fig. 4a), the thiophen-3-yl 

moiety was buried into the active site making extensive contacts with Tyr1083.32, Phe1093.33, 

Phe1123.36, Ile1985.42, and Tyr2516.51. The triazole moiety of Compd-34 also made hydrophobic 

contacts with Tyr371.39, Trp862.60, Tyr1083.32, Gln2807.36, and Met2877.43. Similarly, the 

dynamic binding mode of Compd-21 with CCR5 indicates that thiophen-2-yl moiety made 

extensive contacts with Phe1093.33, Phe1123.36, Ile1985.42, Trp2486.48, and Tyr2516.51 in the deep 

binding pocket. The triazole ring of Compd-21 was also involved in interactions with Tyr371.39, 

Trp862.60, Tyr892.63, Tyr1083.32, Gln2807.36, and Met2877.43 (Fig. 4b). In Fig. 4c, Tyr1083.32, 
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Phe1093.33, Phe1123.36,  and Ile1985.42 were also observed to engage in interactions with the 

phenyl group of Maraviroc whereas the triazole moiety made more contacts with Val251.27, 

Leu331.35, Tyr371.39 and Trp862.60. 

 

3.3. Distinctive Structural Dynamics of CCR5 upon Inhibitors Binding Revealed by MD 

Simulations 

Explicit MD simulations of CCR5 embedded in a hydrated ionized POPC lipid bilayer were 

performed to elucidate the inhibitory mechanism and the conformational dynamics associated 

with CCR5 by the novel 1‑heteroaryl-1,3-propanediamine derivatives HIV-1 entry inhibitors. 

Presented in Table 1 are the different simulated systems in this study with a detailed description 

of system preparations outlined in the methodology section.  

3.3.1. Structural Stability Evaluation  

The Root Mean Squared Deviation (RMSD) of Cα atoms with respect to the minimized starting 

crystal structure was calculated to evaluate the structural stability of each of the studied systems 

throughout the simulation (Fig. 5a). The MD simulations ultimately produced relatively stable 

trajectories with respect to backbone structural changes. The RMSD curves show that all the 

unbound and bound-complexed systems under study were evolving until 100 ns.  

The overall average RMSD for the entire protein structures were 2.2 ± 0.3 Å, 2.1 ± 0.3 Å, 2.0 

± 0.3 Å, and 1.7 ± 0.2 Å for CCR5-21, CCR5-34, CCR5-MVR, and CCR5-APO, respectively. 

From the RMSD results, the mean deviation of all systems was lower than 2.3 Å, and a 

maximum RMSD value smaller than 3.0 Å. The dynamic stability of Maraviroc, Compd-21, 

and Compd-34 was also calculated from the RMSDs of heavy atoms of the inhibitors to 

adequately assess their stability at the CCR5 binding site (Fig. S1a). The observed average 

active site RMSD within 8Å of the inhibitors were 1.3 ± 0.2 Å, 1.7 ± 0.5 Å, and 2.1 ± 0.4 Å 

for Compd-21, Compd-34, and Maraviroc, respectively (Fig. S1a).  

3.3.2. Alterations in CCR5 Solvent Accessibility  

The Solvent Accessible Surface Area (SASA) was examined to explore the behaviour of 

hydrophobic and hydrophilic residues of the CCR5 complexes with water molecules during the 

simulation (Fig. 5c). The SASA assessment is capable of predicting the extent of protein 

conformational changes occurring upon binding (Marsh & Teichmann, 2011). An average 

SASA value of 16329.8 ± 310 Å2, was observed for the Apo system, while CCR5-21, CCR5-

34, and CCR5-MVR complexes were 16732.1 ± 256 Å2, 16988.3 ± 311 Å2, and 16292.8 ± 281 
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Å2, respectively. In addition, the observed average active site SASA within 8Å of the inhibitors 

were 118.70 ± 26.7 Å, 135.69 ± 30.4 Å, and 146.67 ± 27.4 Å for Compd-21, Compd-34, and 

Maraviroc, respectively (Fig. S1c).  

 

 

 Fig. (4). Dynamic binding mode and receptor-ligand interaction fingerprint for (a) Compd-34, 
(b) Compd-21 and (c) Maraviroc at CCR5 binding site. Key functional group variations 
highlighted in dashed circles (Image prepared by author).  

3.3.3. Protein Fold Assessment  
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The radius of gyration (Rg) was computed to estimate the overall change in the total 

compactness, folding and shape of CCR5 protein mass upon binding to the inhibitors during 

the simulations. The Rg graph for Cα atoms of apo and CCR5-complexed systems are shown 

in Fig. 5d with average values of  21.07 ± 0.1 Å, 21.15 ± 0.1 Å, 20.98 ± 0.1 Å, and 20.89 ± 0.1 

Å for CCR5-21, CCR5-34, CCR5-MVR, and CCR5-APO, respectively. Similarly, the average 

active site Rg values within 8 Å of the inhibitors were calculated to be 5.14 ± 0.1 Å, 5.57 ± 0.1 

Å, and 5.68 ± 0.1 Å for Compd-21, Compd-34, and Maraviroc, respectively (Fig. S1b). The 

Rg results showed that the binding of the inhibitors did not significantly affect the active site 

and the overall conformational diversity of the CCR5 protein system.  

 

 

Fig. (5). Time series of (a) RMSDs for complexed and apo systems (b) RMSF for complexed 
and apo systems (c) SASA for complexed and apo systems and (d) Rg for complexed and apo 
systems over 400ns (Image prepared by author).  

3.3.4. Flexibility Analysis 

The Root Mean Square Fluctuation (RMSF) for each system Cα atom was calculated to gain 

insight into the extent to which amino acid residues mobility varies in CCR5 receptor in the 

bound and unbound state (Fig. 5b). The results suggest that while transmembrane regions 

(TMI-TMVII) showed high stability for all systems (~ 1.0 Å RMSF), higher residual 

fluctuations were observed in the intracellular (ICL1, ICL2 and ICL3) and extracellular (ECL1, 
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ECL2, and ECL3) loop regions (up to 7 Å RMSF). This increased loop residual fluctuations 

were prominent in the ICL3, ECL2 and ECL3 regions. The observed higher intra- and 

extracellular residual mobility is expected since they belong to the outer parts of the receptor 

that is solvent exposed. 

3.3.5. Secondary Structural Analysis 

The DSSP analysis was further carried out to provide an overview of the gain and loss of 

secondary structure of both the CCR5 and CCR5-inhibitor complexes throughout the 

simulations (Fig. 6). The results showed that the majority of the secondary structure elements 

were stable. All the seven-transmembrane α-helices [TMI (22-58); TMII (63-92); TMIII (97-

132); TMIV (141-167); TMV (186-224); TMVI (228-265); and TMVII (268-300)] persisted 

throughout the simulation in the bound and unbound state. Also, the parallel and antiparallel 

sheet of the β-hairpin in the ECL2 (Thr167-Tyr184) were stable and unaltered throughout the 

entire simulation in all systems. However, slight structural changes were observed in the 

inhibitor bound and unbound state. For instance, the Turn and Bend in the ECL3 (266-267) of 

the unbound state (Fig. 6a) extended into the TMVI (228-265) in the bound state (Fig. 6c-d). 

Similarly, helix-8 (301-313) was more α-helix in Maraviroc bound than in Compd-21, Compd-

34 and the unbound state.   

 
Fig. (6). DSSP analysis for secondary structure prediction for (a) CCR5-apo, (b) CCR5-21, (c) 
CCR5-34 and (d) CCR5-MVR (Image prepared by author). 
3.3.6. Essential Conformational Dynamic Analysis 



156 
 

To identify dominant motion in CCR5 complexes, the principal component analysis (PCA) was 

performed to capture the combined movements of the Cα atoms in the protein for the first few 

essential eigenvectors of the covariance matrix. The principal component and clustering 

analysis provide considerable insight into the nature of conformational differences associated 

with the binding of an inhibitor to a receptor (Desdouits et al., 2015; Martínez-Archundia et 

al., 2019). The sum of eigenvalues increases as a function of the number of eigenvalues 

resulting from the collected MD trajectories is shown in Fig. 7. The obtained spectrum of 

eigenvalues displays the proportion of variances against the eigenvalues for the inhibitor-

complexed systems.  
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Fig. (7). Clustering and principal component projection of the trajectory conformers unto the 
planes formed by the first two principal components based on the dominant motion of the 
complex system for (a) Maraviroc (b) Compd-21, and (c) Compd-34 using the Bio3D package 
in R (Image prepared by author).   
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The PCA showed that the proportion of variance of the first two principal components (PCs) 

accounted for 25.3%, 31.8%, and 34.4% of the overall variation in the detected motion of 

CCR5-MVR, CCR5-Compd21, and CCR5-Compd34 complexed trajectories, respectively. 

The clustering of the complex protein structures for PC1 and PC2 unto two-dimensional 

subspace (Fig. 7) indicates conformational distribution variance in the different CCR5 complex 

systems. Whereas the subspace of PCs 1 and 2 of CCR5-MVR complex showed a uniform and 

overlapping conformational subspace, CCR5-Compd24 and CCR5-Compd34 depict distinct 

periodic jump within the conformational subspace. The internal dynamics of CCR5 when 

bound to Compd34 and Compd21 are diverse from when bound to Maraviroc.  

 

4. Discussion 

In this study, we investigated the binding energy interactions, the structural basis and 

conformational changes associated with the higher binding affinity of Compd-34 and Compd-

21 compared with Maraviroc at CCR5 binding site. An integrated in silico approach that 

combines explicit lipid bilayer MD simulation, principal component analysis, and MM-GBSA 

binding free energy calculations were employed to obtain atomistic molecular details of the 

interaction mechanisms of how slight structural variance between these inhibitors significantly 

affects their binding profiles at CCR5 receptor.  

The predicted binding free energies of the studied inhibitors corroborates with the experimental 

bioactivity data. Furthermore, the decomposition of the total interaction energy components 

suggests that van der Waals interactions appear to dominate in stabilizing the CCR5-inhibitor 

complexes. The dynamic hydrogen bond analysis showed that hydrogen bond interactions 

between the antagonists and the active site residues Glu2837.39, Gln2807.36, Tyr2516.51, 

Thr2847.40, and Tyr371.39 (with Compd-34); Glu2837.39, Tyr2516.51, Tyr371.39 and Gln2807.36 

(with Compd-21); and Glu2837.36, Tyr371.39, and Tyr2516.51 (with Maraviroc) are vital for the 

stability of the ligand-bound conformations. Bai et al. (2014) demonstrated that residues 

Tyr371.39, Tyr2516.51 and Glu2837.39 form stable hydrogen bonds with Maraviroc (Bai et al., 

2014). The overall hydrogen bond strength and stability were observed to be higher for Compd-

34 and Compd-21 than for Maraviroc at CCR5 active site.  

The binding of gp120 to CCR5 has been reported to be sensitive to the mutations of active site 

residues such as Trp862.60, Trp9423.50, Tyr1083.32, Trp2486.48, and Tyr2516.51. These residues 

were suggested to form a potential binding cavity for gp120 (Garcia-Perez et al., 2011).  The 

recent crystallization of the full-length gp120 in complex with unmodified CCR5 receptor 
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reveals that the gp120 V3 loop makes extensive contacts with residues of the chemokine 

recognition site 2 (Phe1093.33, Tyr1083.32, Trp862.60, Tyr892.63, Glu2837.39, and Tyr2516.51) 

(Shaik et al., 2019). The gp120 V3 loop of HIV-1 has been observed to predominantly occupy 

the minor sub-pocket formed by the transmembrane helices I-III and VII of the chemokine 

recognition site 2 (CRS2) of CCR5. The V3 loop Arg313 residue seems to be sandwiched 

between Glu2837.39 and Tyr2516.51 of CCR5(Shaik et al., 2019). The per-residue interaction 

energy decomposition reveals that Trp862.60, Tyr1083.32, Tyr2516.51 make overall stronger 

interactions with Compd-21 and Compd-34 compared with Maraviroc. Similarly, Tyr2516.51 

and Glu2837.39 further engage in stronger hydrogen bond interactions with Compd-21 and 

Compd-34 compared to Maraviroc. These observed interactions cumulatively accounted for 

Compd-21 and Compd-34 higher ΔG binding energies than Maraviroc. These findings further 

support the experimental findings (Tan et al., 2013) and the theoretical result (Bai et al., 2014) 

demonstrating that Tyr371.39, Tyr2516.51, Glu2837.39 of TMI, TMVI and TMVII play a vital role 

in the binding of inhibitors to CCR5 binding site. 

The Principal component analysis (PCs 1 and 2) revealed a subspace of CCR5-MVR complex 

with a uniform and overlapping conformational subspace, whereas CCR5-Compd31 and 

CCR5-Compd-21 complexes showed distinct periodic jump within the conformational 

subspace. The SASA results showed that active site amino acid residues within 8 Å of CCR5-

21 and CCR5-34 inhibitors had lower SASA values compared to CCR5-MVR. 

The MD simulations and atomistic interaction analysis of the studied compounds substantiate 

the recent findings that Maraviroc blocks gp120 binding to CCR5 via direct competitive 

inhibition in contrast to earlier views of allosteric inhibition via conformational availability 

restriction (Shaik et al., 2019). As evident by the hydrogen bond analysis, residue energy 

decomposition analysis, and the protein-ligand interaction, the studied inhibitors made 

important contacts with the residues that are critical in gp120 V-loop binding. The gp120 V3 

loop has been observed to overlap mainly with Maraviroc in the minor sub pocket, which is 

occupied primarily by the triazole moiety of Maraviroc, Compd-31, and Compd-34. Structural 

modifications at the thiophene substituent with functional group(s) that may maintain strong 

hydrogen bond with Glu2837.39 and Tyr2516.51 as well as the addition of new functional groups 

to the triazole ring may increase inhibitor competition with gp120 V3-loop with enhanced 

potency (Shaik et al., 2019). 
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5. Conclusion 

In summary, the findings highlighted in this work provide a structural understanding of the 

novel 1-heteroaryl-1,3-propanediamine derivatives (Compd-21 and Compd-34) and Maraviroc 

targeting the CCR5 receptor. The MD simulation analyses reveal that Trp862.60, Tyr1083.32, 

Tyr2516.51 make overall stronger interaction with Compd-21 and Compd-34 compared with 

Maraviroc. Similarly, Tyr2516.51 and Glu2837.39 further engage in stronger hydrogen bond 

interactions with Compd-21 and Compd-34 compared with Maraviroc. Thus, the substitution 

of the thiophene moieties in Compd-34 and Compd-21 cumulatively made stronger interactions 

with residues critical for V3-loop binding compared with the phenyl group in Maraviroc. 

Further structural modifications at the thiophene substituent and the addition of additional 

functional groups to the triazole ring may increase inhibitor competition with gp120 V3-loop 

with enhanced potency. This offers a foundation for the onward structural modifications and 

rational design of novel potent antagonists of CCR5 in HIV-1 treatment.  

Ethics Approval and Consent to Participate 

Not applicable 

Human and Animal Rights 

No humans and animals were used in the study. 

Consent for Publication 

Not applicable 

Availability of Data and Materials 

Not applicable 

Funding 

None 

Conflict of Interest 

The authors declare no conflicts of interest in this work. 

Acknowledgements 

The authors acknowledge the Centre for High-Performance Computing (CHPC) 

(http://www.chpc.ac.za), Cape Town, South Africa for computational support and Schrodinger 



161 
 

Maestro licence. We are further grateful to the College of Health Sciences of the University of 

KwaZulu-Natal for supporting the research.  

ORCID IDs 

Prof Mahmoud E.S. Soliman 0000-0002-8711-7783 

Dr Fisayo Andrew Olotu 0000-0003-3604-5983 

Patrick Appiah-Kubi  0000-0002-5904-3051 

Authors Contribution 

P. Appiah-Kubi conceptualized and designed the study, performed the experiment, data 

analysis and plots, interpretation of data, and wrote the manuscript. FA. Olotu reviewed and 

edited the final manuscript draft. M.E.S Soliman supervised the study.  

References 
Allers, K., Hütter, G., Hofmann, J., Loddenkemper, C., Rieger, K., Thiel, E. & Schneider, T. 

2011. Evidence for the cure of HIV infection by CCR5Δ32/Δ32 stem cell transplantation. 
Blood, 117(10): 2791–2799. 

Bai, Q., Zhang, Y., Li, X., Chen, W., Liu, H. & Yao, X. 2014. Computational study on the 
interaction between CCR5 and HIV-1 entry inhibitor maraviroc: insight from accelerated 
molecular dynamics simulation and free energy calculation. Physical Chemistry Chemical 

Physics, 16(44): 24332–24338. 
Ballesteros, J.A. & Weinstein, H. 1995. [19] Integrated methods for the construction of three-

dimensional models and computational probing of structure-function relations in G 
protein-coupled receptors. In Methods in neurosciences. Elsevier: 366–428. 

Bayly, C.I., Cieplak, P., Cornell, W. & Kollman, P.A. 1993. A well-behaved electrostatic 
potential based method using charge restraints for deriving atomic charges: the RESP 
model. The Journal of Physical Chemistry, 97(40): 10269–10280. 

Berger, E.A., Murphy, P.M. & Farber, J.M. 1999. Chemokine receptors as HIV-1 coreceptors: 
roles in viral entry, tropism, and disease. Immunol Today, 17(1): 657–700. 
https://doi.org/10.1146/annurev.immunol.17.1.657. 

Berman, H.M., Battistuz, T., Bhat, T.N., Bluhm, W.F., Philip, E., Burkhardt, K., Feng, Z., 
Gilliland, G.L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., 
Thanki, N., Weissig, H. & Westbrook, J.D. 2002. The Protein Data Bank. Biological 

Crystallography, 58: 899–907. 
Case, D.A., Babin, V., Berryman, J., Betz, R.M., Cai, Q., Cerutti, D.S., Cheatham Iii, T.E., 

Darden, T.A., Duke, R.E. & Gohlke, H. 2018. Amber 18. University of California, San 

Francisco. 
Chen, F., Liu, H., Sun, H., Pan, P., Li, Y., Li, D. & Hou, T. 2016. Assessing the performance 

of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein–protein 
binding free energies and re-rank binding poses generated by protein–protein docking. 



162 
 

Physical Chemistry Chemical Physics, 18(32): 22129–22139. 
Darden, T., York, D. & Pedersen, L. 1993. Particle mesh Ewald: An N⋅ log (N) method for 

Ewald sums in large systems. The Journal of chemical physics, 98(12): 10089–10092. 
Desdouits, N., Nilges, M. & Blondel, A. 2015. Principal component analysis reveals correlation 

of cavities evolution and functional motions in proteins. Journal of Molecular Graphics 

and Modelling, 55: 13–24. 
Detels, R., Munoz, A., McFarlane, G., Kingsley, L.A., Margolick, J.B., Giorgi, J., Schrager, 

L.K., Phair, J.P. & Investigators, M.A.C.S. 1998. Effectiveness of potent antiretroviral 
therapy on time to AIDS and death in men with known HIV infection duration. Jama, 
280(17): 1497–1503. 

Dickson, C.J., Madej, B.D., Skjevik, Å.A., Betz, R.M., Teigen, K., Gould, I.R. & Walker, R.C. 
2014. Lipid14: the amber lipid force field. Journal of chemical theory and computation, 
10(2): 865–879. 

Dyda, F., Hickman, A.B., Jenkins, T.M., Engelman, A., Craigie, R. & Davies, D.R. 1994. 
Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other 
polynucleotidyl transferases. Science, 266(5193): 1981–1986. 

FDA, U.S. 2007. FDA notifications. Maraviroc approved as a CCR5 co-receptor antagonist. 
AIDS Alert, 22: 103. 

Flanagan, C.A. 2014. Receptor conformation and constitutive activity in CCR5 chemokine 
receptor function and HIV infection. In Advances in Pharmacology. Elsevier: 215–263. 

Garcia-Perez, J., Rueda, P., Alcami, J., Rognan, D., Arenzana-Seisdedos, F., Lagane, B. & 
Kellenberger, E. 2011. Allosteric model of maraviroc binding to CC chemokine receptor 
5 (CCR5). Journal of Biological Chemistry, 286(38): 33409–33421. 

Garcia-Perez, J., Staropoli, I., Azoulay, S., Heinrich, J.-T., Cascajero, A., Colin, P., Lortat-
Jacob, H., Arenzana-Seisdedos, F., Alcami, J. & Kellenberger, E. 2015. A single-residue 
change in the HIV-1 V3 loop associated with maraviroc resistance impairs CCR5 binding 
affinity while increasing replicative capacity. Retrovirology, 12(1): 1–20. 

Grant, B.J., Rodrigues, A.P.C., ElSawy, K.M., McCammon, J.A. & Caves, L.S.D. 2006. Bio3d: 
an R package for the comparative analysis of protein structures. Bioinformatics, 22(21): 
2695–2696. 

Günthard, H.F., Aberg, J.A., Eron, J.J., Hoy, J.F., Telenti, A., Benson, C.A., Burger, D.M., 
Cahn, P., Gallant, J.E. & Glesby, M.J. 2014. Antiretroviral treatment of adult HIV 
infection: 2014 recommendations of the International Antiviral Society–USA Panel. 
Jama, 312(4): 410–425. 

Harrison, S.C. 2008. Viral membrane fusion. Nature structural & molecular biology, 15(7): 
690. 

Hou, T., Wang, J., Li, Y. & Wang, W. 2011. Assessing the performance of the MM/PBSA and 
MM/GBSA methods. 1. The accuracy of binding free energy calculations based on 
molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1): 
69–82. 

Huff, J.R. 1991. HIV protease: a novel chemotherapeutic target for AIDS. Journal of medicinal 

chemistry, 34(8): 2305–2314. 
Isberg, V., Mordalski, S., Munk, C., Rataj, K., Harpsøe, K., Hauser, A.S., Vroling, B., Bojarski, 

A.J., Vriend, G. & Gloriam, D.E. 2016. GPCRdb: an information system for G protein-



163 
 

coupled receptors. Nucleic acids research, 44(D1): D356–D364. 
Jo, S., Kim, T., Iyer, V.G. & Im, W. 2008. CHARMM‐GUI: a web‐based graphical user 

interface for CHARMM. Journal of computational chemistry, 29(11): 1859–1865. 
Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W. & Klein, M.L. 1983. 

Comparison of simple potential functions for simulating liquid water. The Journal of 

Chemical Physics, 79(2): 926–935. 
Kohlstaedt, L.A., Wang, J., Friedman, J.M., Rice, P.A. & Steitz, T.A. 1992. Crystal structure 

at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science, 
256(5065): 1783–1790. 

Larini, L., Mannella, R. & Leporini, D. 2007. Langevin stabilization of molecular-dynamics 
simulations of polymers by means of quasisymplectic algorithms. The Journal of chemical 

physics, 126(10): 104101. 
Lomize, M.A., Lomize, A.L., Pogozheva, I.D. & Mosberg, H.I. 2006. OPM: orientations of 

proteins in membranes database. Bioinformatics (Oxford, England), 22(5): 623–625. 
M Gibson, R. & J Arts, E. 2012. Past, present, and future of entry inhibitors as HIV 

microbicides. Current HIV research, 10(1): 19–26. 
Maier, J.A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K.E. & Simmerling, C. 

2015. ff14SB: improving the accuracy of protein side chain and backbone parameters 
from ff99SB. Journal of chemical theory and computation, 11(8): 3696–3713. 

Marsh, J.A. & Teichmann, S.A. 2011. Relative Solvent Accessible Surface Area Predicts 
Protein Conformational Changes upon Binding. Structure(London, England:1993), 19(6): 
859–867. 

Martínez-Archundia, M., Correa-Basurto, J., Montaño, S. & Rosas-Trigueros, J.L. 2019. 
Studying the collective motions of the adenosine A2A receptor as a result of ligand 
binding using principal component analysis. Journal of Biomolecular Structure and 

Dynamics, 37(18): 4685–4700. 
Oppermann, M. 2004. Chemokine receptor CCR5: insights into structure, function, and 

regulation. Cellular signalling, 16(11): 1201–1210. 
Peng, P., Chen, H., Zhu, Y., Wang, Z., Li, J., Luo, R.-H., Wang, J., Chen, L., Yang, L.-M. & 

Jiang, H. 2018. Structure-Based Design of 1-Heteroaryl-1, 3-propanediamine Derivatives 
as a Novel Series of CC-Chemokine Receptor 5 Antagonists. Journal of medicinal 

chemistry, 61(21): 9621–9636. 
Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C. & 

Ferrin, T.E. 2004. UCSF Chimera--a visualization system for exploratory research and 
analysis. Journal of computational chemistry, 25(13): 1605–1612. 

Roe, D.R. & Cheatham, T.E. 2013. PTRAJ and CPPTRAJ: Software for Processing and 
Analysis of Molecular Dynamics Trajectory Data. Journal of Chemical Theory and 

Computation, 9(7): 3084–3095. 
Rosenbaum, D.M., Rasmussen, S.G.F. & Kobilka, B.K. 2009. The structure and function of G-

protein-coupled receptors. Nature, 459(7245): 356. 
Salentin, S., Schreiber, S., Haupt, V.J., Adasme, M.F. & Schroeder, M. 2015. PLIP: fully 

automated protein–ligand interaction profiler. Nucleic acids research, 43(W1): W443–
W447. 

Salmas, R.E., Yurtsever, M. & Durdagi, S. 2015. Investigation of inhibition mechanism of 



164 
 

chemokine receptor CCR5 by micro-second molecular dynamics simulations. Scientific 

reports, 5: 13180. 
Schrödinger Release 2019-4. 2019. Maestro. https://www.schrodinger.com/Maestro. 
Seifert, E. 2014. OriginPro 9.1: Scientific data analysis and graphing software - Software 

review. Journal of Chemical Information and Modeling, 54(5): 1552–1552. 
Shaik, M.M., Peng, H., Lu, J., Rits-Volloch, S., Xu, C., Liao, M. & Chen, B. 2019. Structural 

basis of coreceptor recognition by HIV-1 envelope spike. Nature, 565(7739): 318. 
Sorce, S., Myburgh, R. & Krause, K.-H. 2011. The chemokine receptor CCR5 in the central 

nervous system. Progress in neurobiology, 93(2): 297–311. 
Sprenger, K.G., Jaeger, V.W. & Pfaendtner, J. 2015. The General AMBER Force Field (GAFF) 

Can Accurately Predict Thermodynamic and Transport Properties of Many Ionic Liquids. 
The Journal of Physical Chemistry B, 119(18): 5882–5895. 

Sun, H., Duan, L., Chen, F., Liu, H., Wang, Z., Pan, P., Zhu, F., Zhang, J.Z.H. & Hou, T. 2018. 
Assessing the performance of MM/PBSA and MM/GBSA methods. 7. Entropy effects on 
the performance of end-point binding free energy calculation approaches. Physical 

Chemistry Chemical Physics, 20(21): 14450–14460. 
Sun, H., Li, Y., Tian, S., Xu, L. & Hou, T. 2014. Assessing the performance of MM/PBSA and 

MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies 
evaluated by various simulation protocols using PDBbind data set. Physical Chemistry 

Chemical Physics, 16(31): 16719–16729. 
Tan, Q., Zhu, Y., Li, Jian, Chen, Z., Han, G.W., Kufareva, I., Li, T., Ma, L., Fenalti, G., Li, 

Jing, Zhang, W., Xie, X., Yang, H., Jiang, H., Cherezov, V., Liu, H., Stevens, R.C., Zhao, 
Q. & Wu, B. 2013. Structure of the CCR5 chemokine receptor-HIV entry inhibitor 
maraviroc complex. Science, 341(6152): 1387–1390. 

Wang, J., Shu, M., Wang, Yuanqiang, Hu, Y., Wang, Yuanliang, Luo, Y. & Lin, Z. 2016. 
Identification of potential CCR5 inhibitors through pharmacophore-based virtual 
screening, molecular dynamics simulation and binding free energy analysis. Molecular 

BioSystems, 12(11): 3396–3406. 
Webb, B. & Sali, A. 2014. Protein structure modeling with MODELLER. Protein Structure 

Prediction: 1–15. 
Wensing, A.M., Calvez, V., Ceccherini-Silberstein, F., Charpentier, C., Günthard, H.F., 

Paredes, R., Shafer, R.W. & Richman, D.D. 2019. 2019 update of the drug resistance 
mutations in HIV-1. Topics in antiviral medicine, 27(3): 111. 

Yang, Y., Shen, Y., Liu, H. & Yao, X. 2011. Molecular dynamics simulation and free energy 
calculation studies of the binding mechanism of allosteric inhibitors with p38α MAP 
kinase. Journal of chemical information and modeling, 51(12): 3235–3246. 

Ylilauri, M. & Pentikäinen, O.T. 2013. MMGBSA as a tool to understand the binding affinities 
of filamin-peptide interactions. Journal of Chemical Information and Modeling, 53(10): 
2626–2633. 

Zhang, F., Yuan, Y., Xiang, M., Guo, Y.-Z., Li, M.-L., Liu, Y. & Pu, X.-M. 2019. Molecular 
Mechanism regarding Allosteric Modulation of Ligand Binding and the Impact of 
Mutations on Dimerization for CCR5 Homodimer. Journal of chemical information and 

modeling. 
 



165 
 

CHAPTER 6 

Supplementary Material 

Elucidating the Disparate Inhibitory Mechanisms of Novel 1-Heteroaryl-1,3-

Propanediamine Derivatives and Maraviroc towards C-C Chemokine 

Receptor 5:  Insights for Structural Modifications in HIV-1 Drug Discovery 

Patrick Appiah-Kubi1, Fisayo Andrew Olotu1, Mahmoud E. S. Soliman1* 

1Molecular Bio-computation and Drug Design Laboratory 

School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, 

South Africa 

 

*Corresponding Author: Mahmoud E.S. Soliman 

Telephone: +27 (0) 31 260 8048 

Fax: +27 (0) 31 260 78 

Email: soliman@ukzn.ac.za 

Website: http://soliman.ukzn.ac.za 

Patrick Appiah-Kubi appiahpat@gmail.com 

Fisayo Andrew Olotu olotufisayo@gmail.com 

 

 

 



166 
 

 

Figure S1: Time series of active site (a) RMSDs for complexed systems, (b) Rg for complexed 
systems and (c) SASA for complexed systems over 400ns (Image prepared by author). 
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Abstract 

The C-C chemokine receptor 5 (CCR5) viral coreceptor belonging to the G protein-coupled 

receptor family is one of the families of chemokine receptors. The interactions of CCR5 with 

HIV-1 during viral entry positions it as an effective therapeutic target for the design of potent 

antiviral therapies. The FDA approved the small-molecule Maraviroc as CCR5 drug in 2007, 

while clinical trials failure has characterised many of the other CCR5 inhibitors. Thus, the 

continual identification of potential CCR5 inhibitors is, therefore warranted. In this study, a 

structure-based discovery approach has been utilised to screen and retrieved novel potential 

CCR5 inhibitors from the Asinex antiviral compound (~ 8,722) database. Explicit lipid-bilayer 

molecular dynamics simulation, in silico physicochemical and pharmacokinetic analyses, were 

further performed for the top compounds. A total of 23 structurally diverse compounds with 

binding scores higher than Maraviroc were selected. Subsequent molecular dynamics (MD) 

simulations analysis of the top four compounds LAS 51495192, BDB 26405401, BDB 

26419079, and LAS 34154543 maintained stability at CCR5 binding site. Furthermore, these 

compounds made pertinent interactions with CCR5 residues critical for the HIV-1 gp120-V3 

loop binding such as Trp86, Tyr89, Phe109, Tyr108, Glu283 and Tyr251. Additionally, the 

predicted in silico physicochemical and pharmacokinetic descriptors of the selected 

compounds were within the acceptable range for drug-likeness. The results suggest positive 

indications that the identified molecules may represent promising CCR5 entry inhibitors. 

Further structural optimisations and biochemical testing of the proposed compounds may assist 

in the discovery of effective HIV-1 therapy. 

 

 

Keywords: C-C Chemokine Receptor 5, Maraviroc, Structure-based drug design, Virtual 

screening, Molecular docking, MD Simulations, Asinex database, ADMET. 
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1. Introduction 

C-C chemokine receptor 5 (CCR5) is a member of the G protein-coupled receptors (GPCRs) 

and is essential in the amelioration of human immunodeficiency virus (HIV) infection 

(Oppermann, 2004). C-C chemokine receptor 5 plays a critical role in the early stages of HIV-

1 infection and is a functionally co-receptor for HIV-1 viral entry (Tan et al., 2013). The human 

immunodeficiency virus-1  penetrates cells by binding its envelope glycoprotein gp120 to the 

CD4 receptor and co-receptors like CCR5 and CXCR4 (Woollard & Kanmogne, 2015). CCR5 

is the most prominent of all chemokine co-receptors employed by HIV-1 for cell penetration, 

typically, at the onset of infection with the R5-tropic HIV-1 strains being transmitted the most 

(Vangelista & Vento, 2018). CCR5 is also a potential target for the amelioration of 

inflammatory, allergic, infectious, and autoimmune diseases such as diabetes, and rheumatoid 

arthritis (Pereira et al., 2009; Spagnolo et al., 2005).  

Extensive research in the development of inhibitors that could block the entry of HIV-1 through 

the target of CCR5 resulted in the approval of Maraviroc for the treatment of HIV-1 infection 

(FDA, 2007; Tan et al., 2013). Maraviroc is the first CCR5 drug approved by the FDA to inhibit 

HIV-1 entry (FDA, 2007). However, its prescription is limited as a result of identified factors 

such as its CYP450 inhibition, drug-drug interactions particularly with CYP3A4 inhibitors, and 

viral resistance (Peng et al., 2018). Clinical studies on other CCR5 antagonists like Aplaviroc 

(Nichols et al., 2008), Vicriviroc (Schürmann et al., 2007; Gulick et al., 2007) and Cenicriviroc 

(Klibanov et al., 2010) failed at some stages of their clinical trials such as lack of efficacy 

and/or hepatotoxicity.  

The limitations of the approved drug and clinical drugs targeting CCR5 as well as the reported 

case of clinical drug failures necessitate the identification and development of novel effective 

and enhanced inhibitors of CCR5. Structure-based virtual screening as incorporated in 

computer-aided drug design has contributed immensely in advancing the drug discovery 

process (Jin et al., 2020; Hughes et al., 2019; Rodríguez et al., 2014). This is because of its 

cost-effectiveness in the identification novel therapeutics within a short time frame. Structure-

based drug discovery enhances database screening by employing the principle of molecular 

docking, which predicts the best conformation for target-ligand interaction. Recent 

advancement in X-ray crystallography and nuclear magnetic resonance and electron cryo-

microscopy (cryoEM) has promoted structure-based drug discovery (SBDD) due to the 

availability of diverse 3D protein crystal structures (Wang et al., 2018). Structure-based drug 

discovery can be employed to investigate the binding mode and ligand binding process with 

substantial accuracy, which provides information about their respective biological activities 
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(Mandal et al., 2009; Wang et al., 2018). Data like these can be harnessed toward the design 

potent high-affinity ligands with basic moieties that produce the needed pharmacological and 

therapeutic activities (Ferreira et al., 2015; Llanos et al., 2017; Macalino et al., 2015).  

Computational strategies employed in the past years toward the identification of potential 

CCR5 inhibitors due to the absence of CCR5 crystal structures were restricted to ligand-based 

approaches such as; shape-based virtual screening (Pérez-Nueno et al., 2008), quantitative 

structure activity relationship (QSAR) (Xu et al., 2004), and ligand-based pharmacophore 

modelling (Debnath, 2003). The first CCR5 crystal structure in complex with Maraviroc was 

reported in 2013 (Tan et al., 2013). More recent approaches following the availability of CCR5 

crystal structure have focused on structure-based methods (Wang et al., 2016; Lin et al., 2019). 

These studies have used compounds from databases such as the National Cancer Institute 

(NCI), ChEMBL database, and ZINC database.  

The recent crystallisation of the full-length CCR5 in complex with gp120 V3 loop suggests 

that Maraviroc blocks gp120 binding to CCR5 via direct competitive inhibition in contrast to 

earlier views of non-competitive allosteric inhibition through conformational availability 

restriction (Shaik et al., 2019). Herein, we screened the unexplored antiviral compound library 

of Asinex database against the recently crystalised full-length CCR5 in complex with gp120 

V3 loop (Shaik et al., 2019). Multistep structure-based virtual screening techniques were 

employed in this study to identify potential CCR5 inhibitors. The best four hits of the identified 

compounds in complex with CCR5 were subjected to conventional computational molecular 

dynamics simulations to understand their atomistic mechanism of action and conformational 

dynamics. The identified compounds could be optimised/tested as potent CCR5 HIV-1 entry 

inhibitors.  

 

2. Materials and Methods  

In this work, diverse pharmacoinformatic techniques, including molecular docking, in silico 

physicochemical and pharmacokinetic analysis, and molecular dynamics simulation have been 

applied in the identification novel potential CCR5 HIV1 entry inhibitors.  

2.1 Compound library and protein preparation 

A total of 8722 antiviral compounds were freely downloaded from the antiviral sub-class of 

the Asinex database (ASINEX, 2020) for the virtual high throughput screening. The Asinex 

database contains compounds that have unique features that can aid in hit-to-lead identification 



171 
 

as well as fragment-based drug design, and structure-based drug design. The single structural 

data format (SDF) of the 8722 compounds were downloaded and further prepared for Autodock 

Vina and Schrodinger Maestro to eliminate unwanted elements and improper valency and 

converted into individual three-dimensional (3D) mol2 format.  

2.2 Ligand and Receptor Preparations for Autodock Vina Screening 

The compounds were initially prepared and converted to pbdqt with raccoon (Forli, 2010). The 

pdbqt format incorporated partial charges and AutoDock atom types acceptable by AutoDock 

Vina (Trott & Olson, 2010). The protein was prepared by adding polar hydrogen atoms and 

Gasteiger charges. All nonstandard residues were deleted from the crystal structure. The grid 

box centre coordinate were 159.28, 148.39 and 161.65 in the X, Y, and Z axes whereas the size 

of 25.20 × 20.86 × 24.85 Å was assigned to the pocket X, Y, and Z axes with exhaustiveness 

set to 8.  The receptor, ligand, and grid parameters were written in the format that is acceptable 

by the Autodock Vina program. 

2.3 Ligands and Protein Preparation procedure for Glide docking 

The LigPrep module implemented in Maestro v12 (Schrödinger Release 2019-4, 2019) was 

used to generate low energy 3D structures of the compounds. The protonation states of the 

compounds were estimated at a pH 7.4 ± 0.2 using the program EpiK (Greenwood et al., 2010) 

and three-dimensional conformations generated. The compounds were desalted, and the 

possible tautomeric conformations set to ~32 tautomer per compound. Minimisation was 

finally performed for the compounds using the OPLS3e force field. The structure of the full-

length CCR5 receptor in complex with the gp120 V3 loop (PDB ID: 6MEO) was used in the 

receptor grid generation for the Glide docking. The centre of the active site grid was defined 

around the binding position of the gp120 V3 loop in the structure. 

The full-length CCR5 receptor was prepared using the Protein Preparation Wizard 

implemented in Maestro v12 (Schrödinger Release 2019-4, 2019) before the Glide docking. 

Pre-processing and energy minimisation of the receptor with OPLS3e force field was 

performed. Protonation states were assigned at physiological pH, followed by the addition of 

hydrogen atoms using the default parameters. The side chains stereochemistry was checked to 

avoid significant induced perturbations during the structure preparation.  

2.4 Structure-based Virtual High Throughput Screening 

The current study followed the schematic workflow presented in Fig. 1. The binding poses and 

affinities of the compounds were initially predicted using the AutoDock Vina molecular 
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docking program (Trott & Olson, 2010). Maraviroc was docked and analysed as a positive 

reference control (Maraviroc Autodock Vina Score = -9.0 kcal/mol). A minimum binding 

affinity score of -10.0 kcal/mol threshold was chosen as the cut-off, and compounds with a 

binding affinity lower than the selected threshold were subsequently chosen for the Maestro 

virtual screening workflow (VSW) (Schrödinger Release 2019-4, 2019).  

To further remove possible false-positive results, the top 500 compounds obtained from the 

Autodock molecular docking were gradually subjected to filtering steps via the Glide virtual 

screening workflow of Schrodinger Glide. The Glide virtual screening workflow module 

(Friesner et al., 2004) possesses unique virtual screening features like the high throughput 

virtual screening (HTVS), standard precision (SP) and extra precision (XP) for improved and 

efficient docking accuracy (Friesner et al., 2006). The above mentioned three docking precision 

levels implement an efficient search for the orientational, conformational and positional space 

of the docked ligand (Friesner et al., 2004; Friesner et al., 2006). Each compound docking 

progressed from HTVS to SP to XP, which involved Glide predicting the binding affinity and 

ranking the compounds. The top 20 % of compounds from the HTVS and SP docking levels 

were selected for XP docking.  

Finally, the top four candidate compounds showing the best possible inhibitor binding pose 

from both the Autodock Vina and Glide-XP dockings were selected for binding mode analyses, 

MD simulations and molecular trajectory analyses. The type and pattern of binding interaction 

were equally analysed by utilising protein-ligand interaction module of Maestro.  



173 
 

 

Fig. 1. Structure-based virtual screening and assessment workflow for the identification of 
potential CCR5 entry inhibitors (Image prepared by author). 
 

2.5 Pharmacokinetics profiling and physiochemical property predictions 

In silico pharmacokinetic profiling and drug-likeness estimations were further performed on 

the top compounds retrieved from the VSW using SwissADME (Daina et al., 2017) and 

pkCSM-pharmacokinetics (Pires et al., 2015) online software.  The Lipinski’s rule of five 

(RO5) for empirical drug-likeness prediction was used to evaluate drug-likeness of the selected 

compounds (Meanwell, 2011). The rule includes: 1) hydrogen bond donors not more than five, 

2) hydrogen bond acceptors not more than ten, 3) an octanol-water partition coefficient logP 

not more than five, 4) molecular weight less than 500 Daltons, and 5) the number of rotatable 
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bonds less than eight. Several vital molecular properties such as hydrophobicity (SlogP), and 

polar surface area (PSA) were also analysed. Additionally, pharmacokinetic parameters such 

as absorption, distribution, metabolism, excretion, and toxicity (ADMET)  were analysed for 

the selected top four compounds relative to Maraviroc using pkCSM-pharmacokinetics 

algorithm protocol.  

2.6 Membrane-protein complex system setup. 

The prepared docked complex structures were embedded in palmitoyl-oleoyl-

phosphatidylcholine (POPC) lipid bilayer using the CHARMM-GUI membrane builder 

(http://www.charmm-gui.org/?doc=input/membrane.bilayer) (Jo et al., 2008). The orientations 

of the complexes were aligned on the CCR5 transmembrane helices obtained from the 

Orientation of Protein Membranes (OPM) server (Lomize et al., 2006).  The complexes were 

then neutralised and solvated with 0.15M of KCl counterions in explicit solvent using the 

TIP3P water model (Jorgensen et al., 1983). The dimension of the final systems approximately 

measured 86 x 86 x 140 Å3, consisting of about 60 potassium ions, 71 chloride ions, 180 lipids 

and 22500 water molecules.  

The charmmlipid2amber.py script was used in the renaming of lipid residues according to the 

Amber lipid14 force field. The Lipid14 force field (Dickson et al., 2014) was used to describe 

the lipids. The general AMBER Force Field (GAFF)(Sprenger et al., 2015) was utilised in 

parameterising the inhibitors via the ANTECHAMBER(Wang et al., 2001) and LEaP module 

of AMBER 18. The coordinate and topology files for the simulations were generated with tleap 

software using the ff14SB, TIP3P, and lipid14 forcefields.  

2.7 Molecular Dynamics (MD) Simulation Protocol 

Molecular dynamic (MD) simulations were performed on the selected ligand-CCR5 complexes 

in an ionised explicit POPC lipid bilayer performed using the Particle Mesh Ewald Molecular 

Dynamics (PMEMD) on the graphical processing unit (GPU) implemented in AMBER 

18(Case et al., 2005).   

An initial minimisation of 6000 steps consisting of 3000 steps of steepest descent and 3000 

steps of conjugate gradient method with harmonic restrain potential of 10 kcal.mol-1.Å-2 on the 

protein and lipids. The entire system was relaxed in a second minimisation step of 15000 

cycles. The systems were heated from 0 to 100 K using the Langevin thermostat in an 

isothermal-isochoric (NVT) ensemble over 30 ps with 10.0 kcal·mol−1·Å−2 harmonic restraints 

on the non-hydrogen atoms of protein, lipid, and ligand with a collision frequency of 1.0 ps-1. 
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The system was further heated to 310 K over 260 ps in isothermal-isobaric (NPT) ensemble 

with an anisotropic pressure coupling and a pressure of one bar. Additional equilibration at 310 

K was performed with harmonic restraints on the protein and ligand beginning at 5.0 

kcal·mol−1·Å−2. This was decreased by 1.0 kcal·mol−1·Å−2 in every 4 ns, for a total of 20 ns of 

additional restrained equilibration under NTP ensemble. A subsequent unrestrained 5 ns 

equilibration was performed before production. 

Finally, 100 ns unrestrained production at 310 K was run under NPT ensemble with SHAKE 

constraints for bonds with hydrogen. The anisotropic pressure coupling with a pressure 

relaxation time of 1.0 ps used to control the pressure of the systems. Long-range electrostatic 

interactions were treated with the particle mesh Ewald  (Darden et al., 1993) under periodic 

boundary conditions with nonbonded interactions cut-off of 12 Å. 

2.7.1 Analysis of MD simulations trajectories 

Post-MD analysis such as the radius of gyration (rGyr), root mean square deviation (RMSD), 

root mean square fluctuation (RMSF), intermolecular hydrogen bond analysis was computed 

using the CPPTRAJ module (Roe & Cheatham, 2013) of the Amber18 suite. All visualisations 

and plots were respectively performed with UCSF Chimera molecular modelling tool and 

Origin data analysis software version 6 (http://www.originlab.com) (Seifert, 2014).  

 

3. Results and Discussion 

3.1 Structure-based Virtual High throughput Screening  

Virtual high throughput screening of databases for novel inhibitors is a useful approach to 

identify potential hit-to-lead candidates for further biological testing with a higher likelihood 

of blocking or triggering the activity of a drug target (Jin et al., 2020; Hughes et al., 2019; 

Rodríguez et al., 2014). The AutoDock Vina was initially used to dock the antiviral compounds 

at CCR5 binding pocket due to its high scoring function with improved speed and docking 

accuracy (Trott & Olson, 2010). We further performed serial docking on the high ranking 

molecules by using the virtual screening workflow (VSW) in Maestro (Schrödinger Release 

2019-4, 2019). The Schrodinger VSW, which uses the grid-based ligand docking energetics 

(Glide) algorithm, was further used to screen down the number of ligands. The Glide docking 

program incorporates high throughput virtual screening (HTVS), standard precision (SP), and 

extra precision (XP) 
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docking protocols (Friesner et al., 2006; Friesner et al., 2004). These tools are ranking filters 

which try to locate the precise positions of ligands in the binding pocket of CCR5 as well as 

predict an accurate ligand pose in the binding pocket. The top four (4) compounds with the 

lowest binding scores and a good binding pose in comparison with Maraviroc were selected 

for further analysis (Table 1). Also, Table S1 and Table S3 present the chemical structures and 

binding scores, respectively, for the remaining 19 compounds that can further be 

optimised/tested toward CCR5. The 2D structures of the best four hits and Maraviroc are 

presented in Fig. 2 and the other 19 compounds shown in Table S1. 

 

 

Fig. 2. The selected top four compounds following Autodock Vina, Glide HTVS, Glide SP and 
Glide XP docking and the reference drug (Maraviroc) used for molecular dynamics simulation 
(Image prepared by author). 
 

The docking scores of selected four best-hit compounds (LAS 51495192, BDB 26405401, 

BDB 26419079, LAS 34154543) ranged from -10.0 kcal/mol to -10.5 kcal/mol for Autodock 

Vina and from -6.91 kcal/mol to -7.63 kcal/mol for Glide XP scores. These binding energies 

were higher than that of Maraviroc (Autodock Vina score = 9.0 kcal/mol: Glide XP score = 

6.73 kcal/mol) (Table 1). The docking results of the remaining 19 compounds which exhibited 

higher docking scores over Maraviroc are also presented in Supplementary Table S3.  
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Table 1.  Summary of binding energy scores obtained from Autodock Vina and Glide XP for 
the identified top-four compounds. 
 

Entry 

Number 

Asinex 

Compound ID 

Autodock Score 

(kcal/mol) 

Glide XP Score 

(kcal/mol) 

8356 LAS 51495192 -10.5 -7.63 

287 BDB 26405401 -10.3 -7.30 

579 BDB 26419079 -10.0 -7.20 

7073 LAS 34154543 -10.3 -6.91 

Maraviroc N/A -9.0 -6.73 
 

3.2 Molecular interactions and binding modes of best-hits compounds relative to 

Maraviroc 

To obtain insights on the binding interactions between the top four compounds from Glide XP 

within CCR5 receptor binding pocket, their complexes were explored through their 2D 

interaction maps (Fig. 3) and 3D structures (Fig. 4). The molecular interactions of the best four 

hits at the CCR5 binding site were assessed using Maestro protein-ligand interaction. The 

binding mode of the top four compounds (LAS 51495192, BDB 26405401, BDB 26419079, 

and LAS 34154543) relative to Maraviroc bind at a similar location of the active site 

overlapping with the gp120 V3-loop (Fig. 4F).   

The identified top four compounds were observed to engage in hydrogen bond interactions 

(Fig. 3 and Table 2) with residues such as Glu283, Gln280, Thr105, Tyr37, Ser180, Trp190, 

Thr195, Asn258, Lys191, Tyr251, Tyr108, and Thr167 similar to Maraviroc with Glu283, 

Tyr37, Tyr251, Ser180, and Trp86. Additionally, the top four compounds were also involved 

in π-π stacking interactions with residues such as Trp86, Tyr89, Tyr108, Phe112, and Tyr251. 

Maraviroc interacts with Tyr108, Phe109 and Phe112 via in π-π stacking. The residues such as 

Trp9423.50, Trp862.60, Tyr1083.32, Tyr2516.51, and Trp2486.48  been suggested to form a potential 

binding cavity for gp120 and has also been described to be sensitive to mutations of these 

residues (Garcia-Perez et al., 2011). The full-length gp120 in complex with unmodified CCR5 

receptor recently reported shows that the gp120 V3 loop makes extensive contacts with 

residues such as Tyr1083.32, Phe1093.33, Glu2837.39, Tyr892.63, Tyr2516.51, and Trp862.60 of the 

chemokine recognition site 2 (Shaik et al., 2019). The residue Arg313 of the gp120 V3 loop 

appears to be sandwiched between Glu2837.39 and Tyr2516.51 of CCR5(Shaik et al., 2019). The 

identified compounds made important contacts with residues critical for gp120 V3 loop 

interaction at the CCR5 binding site such as Trp86, Tyr89, Phe109, Tyr108, Glu283 and 

Tyr251. 
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Table 2. Dynamic hydrogen bond interactions of the potential inhibitors relative to Maraviroc 
at CCR5 binding site over the 100ns MD simulation. 
 

Compounds H-Acceptor H-Donor Occupancy 
(%) 

Distance 
(Å) 

Angle 
(o) 

 
LAS 

51495192 

THR195-OG1     
ASN258-OD1 
LIGAND-N2        
LIGAND-O2 
LIGAND-O2 

LIGAND-N5    
LIGAND-N5 
TYR37-OH     

ASN258-ND2 
LYS191-NZ 

24.83 
16.95 
9.17 
5.38 
2.62 

2.8 
2.8 
2.9 
2.8 
2.8 

152 
157 
153 
155 
153 

BDB 
26405401 

GLU283-OE2 
LIGAND-O1     
LIGAND-O3 

LIGAND-N3    
GLN280-NE2 
SER180-OG 

72.35 
7.21 
4.11 

2.8 
2.8 
2.7 

162 
153 
160 

 
BDB 

26419079 

LIGAND-O1        
LIGAND-O3 
GLU283-OE1 
LIGAND-O3 

TYR37-OH    
TYR251-OH 
LIG314-N3    

TYR108-OH 

58.41 
35.22 
14.67 
10.04 

2.7 
2.7 
2.7 
2.8 

163 
163 
156 
159 

 
LAS 

34154543 

THR167-OG1 
LIGAND-O2 
LIGAND-O2 
LIGAND-N4      
THR105-OG1 
TYR37-OH 

LIGAND-N3 
TYR-37-OH 

GLN280-NE2 
SER180-OG 
LIGAND-O3 
LIGAND-N5 

62.73 
43.16 
31.66 
16.71 
7.64 
3.19 

2.8 
2.7 
2.8 
2.8 
2.7 
2.9 

157 
161 
159 
154 
159 
145 

 
Maraviroc 

GLU283-OE1 
LIGAND-N4 
TYR_251-OH 
LIGAND-O1 

LIGAND-N2 
TYR37-OH 

LIGAND-N1     
SER180-OG 

99.48 
34.32 
9.17 
3.56 

2.7 
2.8 
2.9 
2.7 

161 
157 
159 
162 

 

The superimposed conformation of Maraviroc, the gp120 V3 loop and the top four (4) docked 

compounds at the active site of CCR5 are shown in Fig. 4F. Evidently from Fig. 4A-F, it can 

be observed that the identified compounds, the gp120 V3 loop and Maraviroc overlap at the 

binding pocket of CCR5.  
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Fig. 3. The two-dimensional (2D) ligand-protein interactions diagram of Maraviroc and the 
best-hit compounds (LAS 51495192, BDB 26405401, BDB 26419079, and LAS 34154543) at 
CCR5 binding pocket (Image prepared by author).  
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Fig. 4. Three-dimensional (3D) binding poses of the top four compounds and Maraviroc at 
CCR5 binding site overlapping with gp120 V3 loop (yellow). The binding poses of BDB 
26405401 (A), BDB 26419079 (B), LAS 34154543 (C), LAS 51495192 (D), Maraviroc (E), 
Superposition of all top four compounds, Maraviroc and gp120 V3 loop (F) in the active site 
of CCR5 (Image prepared by author).  
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3.3 Conformational dynamic interaction patterns of the identified compounds revealed 

by molecular dynamics 

Molecular dynamics simulations provide valuable information on ligand binding stability 

within the active site of a target as well as the dynamic behaviour of the receptor (Yang et al., 

2011; Podder et al., 2016; Chaudhary & Aparoy, 2017). To obtain an ensemble understanding 

of the dynamic behaviour of the best-hit compounds relative to Maraviroc at CCR5, MD 

simulations were used to evaluate the stability of the CCR5-inhibitor complex interactions. The 

structural stability and residue fluctuations of the individual complex binding site were 

monitored for 100 ns. 

 

 

Fig. 5. The active site root mean square deviation (RMSD) (A), the active site solvent 
accessible surface area (SASA) (B), the binding site radius of gyration (rGyr) (C) and root 
mean square fluctuation (RMSF) (D) as a function of the 100 ns simulation time (Image 
prepared by author). 
 

The RMSD plot for the active site showed an initial conformational fluctuation and stabilising 

with average values of  1.42 Å, 1.81 Å, 1.68 Å, 2.42 Å, and 1.16 Å for LAS 51495192, BDB 

26405401, BDB 26419079, LAS 34154543, and Maraviroc, respectively (Fig. 5A and Table 

S5). Except for compound LAS 34154543, all the compounds and Maraviroc displayed 
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averaged RMSD below 2 Å. The degree of protein binding site volume expansion of each 

complex system was subsequently assessed by computing the solvent accessible surface area 

(SASA) from individual MD trajectories (Fig. 5B) and their average SASA values provided in 

Table S5. The SASA values of CCR5-BDB26419079 (86.37 Å2) and CCR5-LAS34154543 

(95.38 Å2) complexes were lower than CCR5-Maraviroc (113.66 Å2) system, whereas CCR5-

BDB26405401 (119.92 Å2) and CCR5-LAS51495192 (136.05 Å2) were slightly higher than 

that of  Maraviroc system.  

The radius of gyration (rGyr) which shows the compactness of a biomolecular system, was 

computed within 8 Å of the ligand binding site (Fig. 5C and Table S5). Apart from LAS 

34154543 complex system (5.98 Å), the remaining three compounds had relatively lower rGyr 

values (4.50 Å–5.25 Å) compared to Maraviroc complex system (5.52 Å). To further probe the 

receptor residue mobility of CCR5 during the simulation, the RMSF of the individual CCR5 

residues were monitored for each complex system. As presented in Fig. 5D, compounds LAS 

51495192 and LAS 34154543 displayed lower residue fluctuation compared to BDB 26405401 

and BDB 26419079, which showed similar residue mobility patterns like Maraviroc. 

Additionally, essential residues such as Tyr37, Trp86, Tyr89, Thr105, Tyr108, Phe109, 

Phe112, Ser180, Trp190, Tyr251, and Glu283 showed very low mobility. High residue 

mobilities were also observed in all inhibitors at the intracellular loop (ICL) and extracellular 

loop (ECL) regions compared to the transmembrane domains.  

Additionally, the stability of the best-hits and Maraviroc complexes were observed throughout 

the simulation process for the averaged volume, pressure, temperature, the total energy 

(ETOT), and potential energy (EPtot) values and presented in Table S6. The overall simulation 

quality shows that these parameters were stable over the 100 ns simulation (Fig. S1.). 

Noticeably, the best-hits were observed to relatively have lower total energy and potential 

energy compared cared to Maraviroc. In contrast, the other parameters were observed to be in 

a similar range (Table S6). 

3.4 In silico evaluation of molecular properties and pharmacokinetics of best hits 

To gain insight into the drug-likeness (molecular properties) and potential pharmacokinetic 

properties of the final hits, a comparative in silico analysis was performed. The physiochemical 

properties of the top four compounds and the additional 19 compounds were also analysed and 

presented in Table 3 and Table S4, respectively. The in silico physicochemical properties and 

pharmacokinetic profiling were carried out using SwissADME (Daina et al., 2017) and 

pkCSM-pharmacokinetics (Pires et al., 2015), respectively.  
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An increase in the molecular weight of a therapeutic compound has been reported to decrease 

the amount of concentration at the intestinal epithelium surface and thus reduces absorption 

(Renukuntla et al., 2013). It has equally been suggested that this could obstruct bilayer 

membrane passive diffusion of the compound in question. It is therefore recommended that 

prospective drug candidate should possess a molecular weight less than 500 g/mol in line with 

Lipinski RO5 (Lipinski et al.; Omran & Rauch, 2014). The final retrieved compounds were 

suitable as potential lead molecules as they fell within the acceptable range for a drug-like 

molecule (Table 3 and Table S4). The retrieved compounds outscored Maraviroc in terms of 

molecular weight and therefore suggests they could exhibit good intestinal absorption and 

cellular uptake.  

An additional step to examine the effect of molecular weight on bioactivity was the number of 

rotatable bonds, as it is an excellent descriptor of molecular flexibility (Lu et al., 2004). Report 

by Veber et al. (Veber et al., 2002) revealed that the number of rotatable bonds increases with 

an increase in molecular weight. The Lipinski RO5 suggests that a drug-like compound should 

have a rotatable bond count of less than 10; this promotes absorption and bioavailability (Lu et 

al., 2004; Di & Kerns, 2016a; Vallianatou et al., 2015). From our estimation, Maraviroc had 

nine rotatable bond count, which was above those obtained for the new compounds. This 

further put the retrieved compounds as potential candidates relative to the reference drug. 

 

 Table 3. The physiochemical properties of the top four hit compound relative to Maraviroc. 
 

 
Physiochemical 

Properties 

Compounds 
LAS 

51495192 
BDB 

26405401 
BDB 

 26419079 
LAS 

34154543 
Maraviroc 

Formula C25H27N5O3 C27H29N3O3 C26H26FN3O3 C25H27N5O3 C29H41F2N5O 
MW (g/mol) 445.51 443.54 447.50 445.51 513.67 
MLog Po/w 1.42 3.02 3.45 1.42 4.15 

LogS (Ali) (mol/L) -3.18 
Soluble 

-4.83 
Moderately 

soluble 

-4.50 
Moderately 

soluble 

-3.80 
Soluble 

-6.22  
Poorly soluble 

TPSA (A2) 106.38 71.41 71.41 117.24 63.05 
Molar Refractivity 130.04 132.80 129.49 130.27 145.84 

HBA 4 3 4 4 6 
HBD 2 1 1 3 1 

Rotatable bonds 7 8 7 6 9 
Lipinski violations No; 0 No; 0   No; 0   No; 0   Yes; 2 

HBD = number of hydrogen bond donors (HBD ≤ 5); HBA = number of hydrogen bond donors (HBD ≤ 10); 
TPSA = total polar surface area (≤140);  MLOGP = predicted octanol/water partition coefficient (MLOGP < 
4.15);  MW = molecular weight (g/mol) (MW ≤ 500); Rotatable bonds ( ≤ 8); TPSA =  Topological polar surface 
area (≤ 140) 
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LogP measures the hydrophilicity of chemical compounds, which is the logarithm of the 

coefficient of their permeation across n-octanol and water (Octanol/Water) (Lipinski, 2000). 

Hence, high MLogP value indicates a reduction in aqueous solubility, and this could lead to a 

decrease in absorption. All the top four hits had MLogP lower than Maraviroc (Table 3). Beside 

compound BDG 51127568 in Table S4, all the other compounds displayed lower MLogP 

values compared to Maraviroc.  

Also, LogS was employed to estimate the aqueous solubility of the retrieved compounds 

relative to the approved drug. The LogS, in addition to contributing to the determination of 

membrane permeability, equally provide an idea of the oral bioavailability of drugs (Wang & 

Hou, 2011). A minimum acceptable range of 0 to -6 for aqueous solubility accounts for 95 % 

of the existing drugs (Wang & Hou, 2011). The obtained values in Table 3 revealed that all the 

chemical compounds fall within the acceptable range for being optimally absorbed in the body. 

The retrieved compound solubility ranged from moderately soluble to soluble, whereas poor 

solubility was attributed to Maraviroc. Also, except compound BDG 51127568, the remaining 

compounds in Table S4 had good LogS values compared to Maraviroc.   

The topological polar surface area (TPSA) puts together the surface polar atoms, most notably 

the oxygen and nitrogen in connection with the hydrogen atoms that they are attached. It aids 

in predicting the ability of a chemical compound to pass through the cells, where a low TPSA 

score indicates the compound can permeate the cell (Ertl et al., 2000; Prasanna & Doerksen, 

2008). It also provides a picture of the molecular size and volume, which regulates its 

physiological transport across the lipid bilayer, which includes the gastrointestinal tract (GIT) 

and blood-brain barrier (BBB) (Shityakov et al., 2013). High TPSA has been posited to disrupt 

the transportability of drug candidates which in turn impact the bioactivity of these drugs (Daga 

et al., 2018; Di & Kerns, 2016a). From the indications in Table 3, Maraviroc had the least 

TPSA; however, all the evaluated top four and the 19 compounds were within the acceptable 

range of TPSA of  ≤140 Å2. The compounds BDF 33909572, BDG 34130390,  BDF 34027559, 

BDG 33694125, BDG 51127568, BDG 34042546, BDG 33691535, BDF 34035988, BDG 

33694314, and BDF 33909571 in Table S4 had TPSA values lower than Maraviroc.  

Hydrogen bond has been suggested to affect the solubility of therapeutic compounds since they 

must get broken to facilitate the transportation of these compounds across the lipid bilayer 

membrane (Di & Kerns, 2016b; Sun et al., 2018). Thus, a high number of hydrogen bond 

influences permeation by passive diffusion due to the decline in partitioning from the aqueous 

region into the lipid bilayer membrane. Hydrogen bonding is a unique indicator of the number 

of hydrogen bond donors (HBD) and hydrogen bond acceptors (HBA) in a molecule. This has 
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been extensively employed in the estimation of drug-likeness of a chemical compound. The 

Lipinski RO5 states that a drug-like compound should have HBD count of ≤5 and HBA of ≤10; 

this is the basis for oral bioavailability and activity(Lipinski et al.; Lipinski, 2000). The 

calculation in Table 3 and Table S4 indicate that all the retrieved top compounds passed the 

score for adequate hydrogen bond donation and acceptance.  

The profiling of the ADMET descriptors were determined using the pkCSM-pharmacokinetics 

algorithm protocol (Pires et al., 2015). The predictive factors for drug absorption include 

human intestinal absorption, skin permeability levels, water solubility and Caco-2 

permeability. The factors affecting the distribution of a drug include the volume of distribution 

(VDss), CNS permeability, and the blood-brain barrier (logBB). The predictions of drug 

metabolism are based on the inhibitor or substrate CYP models (CYP3A4, CYP2D6, CYP1A2, 

CYP2C19, CYP2D6, CYP3A4, and CYP2C9). Also, the renal Organic Cation Transporter 2 

(OCT2) substrate and the total clearance model were used to predict excretion of the potential 

drug. The estimation of potential drug toxicity was based on models such as skin sensitisation, 

AMES toxicity, and Oral rat acute toxicity. These predictive parameters were estimated for the 

top four compounds and the reference drug Maraviroc (Table 4).  

Regarding the parameters for absorption, the percentage of human intestinal absorption (HIA) 

were higher for all the top four compounds (88.7 – 93.6%) except for LAS 34154543 (80.3 %) 

when compared to Maraviroc (88.2%). Also, optimal Caco-2 permeability which is a predictive 

indicator for the absorption of orally administered drugs (> 0.9 suggests high Caco-2 

permeability) were observed for the selected compounds (~0.9 – 1.2) which outscored 

Maraviroc (0.7) (Pires et al., 2015). The predictive absorption indicators of selected compounds 

demonstrate their potential for good oral bioavailability.  

The volume of distribution in human (VDss) is a predictive parameter that describes the extent 

of drug distribution (VDss < -0.15 and VDss > 0.45 denote low and high distribution, 

respectively). The compounds LAS 51495192, BDB 26405401, and BDB 26419079 shows 

tolerable distribution whereas LAS 34154543 and Maraviroc depicted high distribution in 

tissue.  
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Table 4. In silico pharmacokinetics prediction of the newly identified compounds relative to 
Maraviroc. 
 
 

Pharmacokinetics  Properties 
Compounds 

LAS 
5149519

2 

BDB 
2640540

1 

BDB 
2641907

9 

LAS 
3415454

3 

Maraviroc 

                           Absorption 
Water solubility (Log mol/L) -3.06 -4.95 -4.74 -3.07 -4.29 

Caco2 permeability (log Papp in 10−6 cm/s) 0.99 1.22 1.19 0.88 0.74 
Human intestinal absorption (% Absorbed) 88.72 93.55 92.69 80.26 88.15 

                            Distribution 
Blood Brain Barrier Permeability (log BB) -0.68 -0.03 -0.25 -0.84 0.19 

VDss (human)  (log L/kg) -0.06 0.02 0.06 0.49 1.40 
CNS permeability (log PS) -2.71 -2.12 -2.11 -2.76 -1.96 

                             Metabolism 
CYP2D6 substrate Yes No No No Yes 
CYP3A4 substrate No Yes Yes Yes Yes 
CYP1A2 inhibitor No No No Yes No 
CYP2C19 inhibitor Yes Yes Yes Yes No 
CYP 2C9 inhibitor Yes Yes Yes Yes No 
CYP 2D6 inhibitor No No No No No 
CYP 3A4 inhibitor No Yes Yes No Yes 

                               Excretion 
Total Clearance (log ml/min/kg) 1.09 1.21 0.289 1.19 0.64 

Renal OCT2 substrate Yes No No Yes Yes 
                                Toxicity 

AMES toxicity No No No Yes No 
Oral rat acute toxicity (LD50) (mol/kg) 2.51 2.52 2.59 2.20 2.81 

Skin Sensitisation No No No No No 
 

It can also be observed from Table 4 that two of the identified compounds (BDB 26405401 

and BDB 26419079) and Maraviroc were predicted to inhibit the critical enzyme of cytochrome 

P450 responsible for drug metabolism (CYP3A4 isoform). The selected compounds were also 

within acceptable/tolerable range for central nervous system (CNS) penetration. The predicted 

values of the total clearance (Table 4), which assess the efficiency of a potential drug to be 

eliminated from the body, suggests that reference drug and all the top four compounds possess 

good renal elimination. Finally, the predictive AMES toxicity test posits toxicity for the 

compounds LAS 34154543, whereas the rest and the reference drug passed the test. 

Additionally, all the compounds were predicted to display no skin sensitisation with good oral 

rat acute toxicity. The various physiochemical and pharmacokinetic predictions (Table 3 and 

Table 4) suggest that the selected compounds could be tested or further manipulated as 

potential candidates toward the CCR5 receptor as HIV-1 entry inhibitors.  
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4. Conclusion 

CCR5 inhibitors have been demonstrated to display great potential strides HIV-1 infection 

treatment. However, the risk of life-threatening adverse effects, such as allergic reaction, skin 

reaction, liver and damage heart attack is caused by the FDA approved drug, Maraviroc (FDA, 

2007; Peng et al., 2018). Hence, identifying novel potential inhibitors of CCR5 with new 

chemical scaffolds, relatively less adverse effects and displaying improved binding affinity are 

highly desired. The structure of the full-length CCR5 is significantly beneficial in the discovery 

and designing of potential lead candidates as HIV-1 entry inhibitors. Structure-based virtual 

screening remains an integral approach in the identification of new chemical scaffolds against 

the active site of a known protein target. 

 In this study, structure-based virtual screening of the Asinex antiviral database and further 

analyses lead to the identification of novel potential CCR5 inhibitors. In summary, the Asinex 

antiviral database was screened against CCR5. The applied in silico approaches identified 

compounds LAS 51495192,  BDB 26405401, BDB 26419079, and LAS 34154543 with 

binding scores higher than Maraviroc. These compounds were also observed to make 

interactions with residues critical for gp120 V3 loop binding. Additional 19 compounds with 

similar or improved physiochemical properties and higher binding scores compared with 

Maraviroc that could be further optimised have also been reported. Furthermore, in silico 

pharmacokinetics and physiochemical estimations also indicated the predicted values of the 

physicochemical descriptors were within the acceptable range for drug-likeness, therefore 

suggesting positive indications that the identified potential molecules are promising drug-like 

entities. The successful application of multidisciplinary computational drug discovery 

approaches has allowed the identification of diverse potential compounds laying the 

groundwork for experimental exploration of the suggested compounds. Further optimisations 

and testing of these compounds may assist in the discovery of effective HIV-1 therapy.  
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Table S1. 2D chemical structures of the remaining 19 top hit compounds against CCR5 
protein target. 

 

 

Entry number: 8354 
Asinex compound ID: LAS 51495184 

Entry number: 1093 
Asinex compound ID: BDC 23205804 

 

 

Entry number: 3673 
Asinex compound ID: BDF 33909572 

Entry number: 5477 
Asinex compound ID: BDG 34130390 

 

 

Entry number: 1077 
Asinex compound ID: BDC 23205600 

Entry number: 8530 
Asinex compound ID: LAS 51502049 



195 
 

 

 

Entry number: 4856 
Asinex compound ID: BDG 34037901 

Entry number: 543 
Asinex compound ID: BDB 26418354 

 

 

Entry number: 4055 
Asinex compound ID: BDG 33691535 

Entry number: 995 
Asinex compound ID: BDC 23197464 

 

 

Entry number: 4156 
Asinex compound ID: BDG 33694125 

Entry number: 5573 
Asinex compound ID: BDG 51127568 
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Entry number: 4946 
Asinex compound ID: BDG 34042546 

Entry number: 3742 
Asinex compound ID: BDF 34027559 

 

 

Entry number: 3746 
Asinex compound ID: BDF 34035988 

Entry number: 5582 
Asinex compound ID: BDG 51129965 

 

 

Entry number: 4157 
Asinex compound ID: BDG 33694314 

Entry number: 3672 
Asinex compound ID: BDF 33909571 

 

Entry number: 5564                     Asinex compound ID: BDG 51126017 
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Table S2. Canonical smiles for the top four best-hit compounds.   
Entry 

Number 
Asinex 

Compound ID 
Canonical smile 

8356 LAS 51495192 Cc2nc1ccccc1n2CCCC(=O)N5CC(O)C(n4ccc3cc(C(N)=O)ccc34)C5 
287 BDB 26405401 Cc4ccc(C1CCCN1C(=O)c3cccn(CC(=O)NCc2ccccc2)c3=O)cc4C 
579 BDB 26419079 Cc4ccc(C1CCCN1C(=O)c3ccc(=O)n(CC(=O)Nc2ccc(F)cc2)c3)cc4C 
7073 LAS 34154543 Cc5cc4nc(CCC(=O)N3CC(O)C(n2ccc1cc(C(N)=O)ccc12)C3)[nH]c4cc5C 

Maraviroc N/A CC1=NN=C(N1C2CC3CCC(C2)N3CCC(C4=CC=CC=C4)NC(=O)C5CCC(CC5)(F)F)C(C)C 
 
Table S3. Canonical smiles and molecular docking scores (Autodock Vina and HTVS Glide score) for the additional 19 compounds and 
Maraviroc.   

Entry 
Number 

Asinex 
Compound ID 

Canonical smile Autodock Score 
(kcal/mol) 

Glide HTVS 
Score (kJ/mol) 

8354 LAS 51495184 CCn1c(CCC(=O)N2CC(O)C(C2)n2ccc3cc(ccc23)C(N)=O)nc2ccccc12 -10.1 -7.445 
1093 BDC 23205804 Cc1nc(ncc1C(=O)Nc1ccccc1)C1CCN(Cc2ccnc3ccccc23)CC1 -10.0 -6.881 
3673 BDF 33909572 CC1C(=C)C2CC3C(OCCC13C2)c1ccc(cc1)-n1cccn1 -10.2 -6.082 
5477 BDG 34130390 CC1(C)Cc2ccccc2C2OCC3(CCN(CC3)C(=O)CCCc3cn[nH]c3)CC12 -10.0 -5.720 
1077 BDC 23205600 Cc1nc(ncc1C(=O)Nc1ccccc1)C1CCN(Cc2cccc3ncccc23)CC1 -10.6 -5.560 
8530 LAS 51502049 Cc1cc2nc(CCC(=O)NC3CCCC(C3O)n3cnc4c(N)ncnc34)[nH]c2cc1C -10.0 -5.522 
4856 BDG 34037901 CC1OC2C(CC1c1cccc(Cl)c1)C(C)(C)Oc1ccc(O)cc21 -10.6   -5.452 
543 BDB 26418354 Cc1cc(C)c2nc(NC(=O)c3ccc(=O)n(CC(=O)NC4CCCCC4)c3)sc2c1 -10.6 -5.599 
3742 BDF 34027559 CC1C(=C)C2CC3C(OCCC13C2)c1ccc(O)c(CN2CCCCC2)c1 -10.2 -5.440 
995 BDC 23197464 Cc1nc(ncc1C(=O)Nc1ccccc1)C1CCCN(C1)C(=O)CCc1ccccc1F -10.1   -5.331 
4156 BDG 33694125 CC1(C)Oc2ccccc2C2OCC3(CCN(CC3)C(=O)c3ccc4ncccc4c3)CC12 -10.6 -5.050 
5573 BDG 51127568 CC(C)Cc1ccc(cc1)C1CC2C(OC1C)c1cc(CC(O)=O)ccc1OC2(C)C -10.5   -4.975 
4946 BDG 34042546 CC1(C)Oc2c(O)cccc2C2OC3CCc4ccccc4C3CC12 -11.4   -4.905 
4055 BDG 33691535 COc1ccc2OC(C)(C)C3CC4(CCN(CC4)C(=O)Cc4cccnc4)COC3c2c1 -10.1   -4.868 
3746 BDF 34035988 CC1C(=C)C2CC3C(OCCC13C2)c1ccc(NC(C)=O)cc1 -10.0 -4.819 
5582 BDG 51129965 COc1ccc2C3CC4C(OC3CCCc2c1)c1cc(ccc1OC4(C)C)C(O)=O -11.3   -4.777 
4157 BDG 33694314 Cc1cccc2nc(cn12)C(=O)N1CCC2(CC1)COC1C(C2)C(C)(C)Oc2ccccc12 -10.7 -4.768 
3672 BDF 33909571 CC1C(=C)C2CC3C(OCCC13C2)c1ccc(OCCN2CCCC2=O)cc1 -10.2 -4.708 
5564 BDG 51126017 COc1ccc2C3CC4C(OC3CCCc2c1)c1cc(CC(O)=O)ccc1OC4(C)C -11.1   -4.697 

Maraviroc N/A CC1=NN=C(N1C2CC3CCC(C2)N3CCC(C4=CC=CC=C4)NC(=O)C5CCC(CC5)(F)F)C(C)C -9.0 -4.695 
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    Table S4. Physicochemical properties of the additional nineteen hit compounds and Maraviroc. 

Entry 
Number 

Asinex 
Compound ID 

Formula MW 
(g/mol) 

MLogP LogS (Ali) 
(mol/L) 

TPSA 
(A2) 

Molar 
Refractivity 

HBA HBD Rotatable 
bonds 

Lipinski Drug 
likeness 

8354 LAS 51495184 C25H27N5O3 445.51 1.42 -3.07 106.38 130.04 4 2 7 Yes; 0 violation 
1093 BDC 23205804 C27H27N5O 437.54 2.70 -5.00 71.01  134.70 5 1 6 Yes; 0 violation 
3673 BDF 33909572 C21H24N2O 320.43 3.85 -3.90 27.05 95.42 2 0 2 Yes; 0 violation 
5477 BDG 34130390 C26H35N3O2 421.58 3.36 -4.78 58.22 126.35 3 1 5 Yes; 0 violation 
1077 BDC 23205600 C27H27N5O 437.54 2.70 -5.00 71.01 134.70 5 1 6 Yes; 0 violation 
8530 LAS 51502049 C23H28N8O2 448.52 0.61 -4.21 147.63 125.57 6 4 6 Yes; 0 violation 
4856 BDG 34037901 C21H23ClO3 358.86 3.83 -5.36 38.69 99.96 3 1 1 Yes; 0 violation 
543 BDB 26418354 C23H26N4O3S 438.54 2.67 -5.86 121.33 123.82 4 2 7 Yes; 0 violation 
3742 BDF 34027559 C24H33NO2 367.52 3.89 -4.38 32.70 114.02 3 1 3 Yes; 0 violation 
995 BDC 23197464 C26H27FN4O2 446.52 3.12 -4.76 75.19 129.17 5 1 8 Yes; 0 violation 
4156 BDG 33694125 C28H30N2O3 442.55 3.53 -5.19 51.66 132.32 4 0 2 Yes; 0 violation 
5573 BDG 51127568 C27H34O4 422.56 4.22 -6.52 55.76 123.86 4 1 5 Yes; 1 violation 
4946 BDG 34042546 C22H24O3 336.42 3.56 -4.73 38.69 97.81 3 1 0 Yes; 0 violation 
4055 BDG 33691535 C26H32N2O4 436.54 2.24 -3.89 60.89 125.89 5 0 4 Yes; 0 violation 
3746 BDF 34035988 C20H25NO2 311.42 3.34 -3.31 38.33 92.61 2 1 3 Yes; 0 violation 
5582 BDG 51129965 C25H28O5 408.49 3.52 -5.50 64.99 114.04 5 1 2 Yes; 0 violation 
4157 BDG 33694314 C27H31N3O3 445.55 2.96 -5.60 56.07 130.73 4 0 2 Yes; 0 violation 
3672 BDF 33909571 C24H31NO3 381.51 3.36 -3.69 38.77 113.72 3 0 5 Yes; 0 violation 
5564 BDG 51126017 C26H30O5 422.51 3.45 -5.44 64.99 118.63 5 1 3 Yes; 0 violation 

Maraviroc N/A C29H41F2N5O 513.67 4.15 -6.22 63.05 145.84 6 1 9 No; 2 violations 
HBD = number of hydrogen bond donors (HBD ≤ 5); HBA = number of hydrogen bond donors (HBD ≤ 10); TPSA = total polar surface area (≤140);  MLOGP = 
predicted octanol/water partition coefficient (MLOGP < 4.15);  MW = molecular weight (g/mol) (MW ≤ 500); Rotatable bonds ( ≤ 8); TPSA =  Topological polar surface 
area (≤ 140) 
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Table S5. The molecular dynamics properties of the inhibitors bound within 8 Å of CCR5 
active site as a function of the 100 ns simulation time for the solvent accessible surface area 
(SASA), the root mean square deviation (RMSD), the radius of gyration (rGyr) as well as the 
intramolecular hydrogen bonds (intraHB) of the entire complex.  

CCR5-complex 
 

rGyr±SD 
(Å) 

intra HB±SD 
 

SASA±SD            
(Å2) 

RMSD±SD 
(Å) 

CCR5-LAS 51495192 5.25±0.22 0.87±0.80 136.05±32.42 1.42±0.76 
CCR5-BDB 26405401 4.50±0.09 0.99±0.62 119.92±21.54 1.81±0.32 
CCR5-BDB 26419079 4.63±0.11 1.29±0.72 86.37±19.89 1.68±0.39 
CCR5-LAS 34154543 5.98±0.16 1.73±0.99 95.38±20.96 2.42±0.50 
CCR5-Maraviroc 5.52±0.08 1.48±0.58 113.66±20.41 1.16±0.23 

 
 

Table S6. Analysis of simulation quality of the top five systems for average total energy 
(ETOT), Potential energy (EPtot), temperature, pressure, and volume of the systems over the 
100 ns simulation time. 

CCR5-complex System Parameter Average±SD 

CCR5-LAS 51495192 

ETOT (kcal/mol) -203475.4±334.53 
EPtot (kcal/mol) -266924.4±267.89 
Pressure (bar) 0.88±84.80 
Temperature (K) 310.0±0.95 
Volume (Å3) 956782.39±820.18 

CCR5-BDB 26405401 

ETOT (kcal/mol) -203432.1±334.80 
EPtot (kcal/mol) -266867.6±267.66 
Pressure (bar) 1.12±83.66 
Temperature (K) 310.0±0.96 
Volume (Å3) 956622.51±817.16 

CCR5-BDB 26419079 

ETOT (kcal/mol) -203136.9±334.43 
EPtot (kcal/mol) -266503.8±267.04 
Pressure (bar) 0.81±84.53 
Temperature (K) 310.0±0.95 
Volume (Å3) 955515.10±829.59 

CCR5-LAS 34154543 

ETOT (kcal/mol) -203638.9±332.41 
EPtot (kcal/mol) -267121.4±266.08 
Pressure (bar) 1.49±84.59 
Temperature (K) 310.0±0.95 
Volume (Å3) 957330.56±801.62 

CCR5-Maraviroc 

ETOT (kcal/mol) -194321.7±326.53 
EPtot (kcal/mol) -254890.4±260.72 
Pressure (bar) 1.01±86.19 
Temperature (K) 310.0±0.98 
Volume (Å3) 913167.63±794.6 
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Fig. (S1). Analysis of the average energetics for potential energy (A),  kinetic energy (B), and 
the total energy (C) of the systems over the 100 ns simulation time (Image prepared by author). 
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CHAPTER 8 

8.0 Conclusions, Recommendations and Future Perspectives 

In this thesis, the binding mechanistic of inhibitors targeting the human GPCRs, i.e. C-C 

chemokine receptor 5 (CCR5), D2 and D3 dopamine receptors (D2DR and D3DR), were studied 

to provide a multifaceted and novel understanding of inhibitor/drug-receptor interactions at the 

selected GPCR targets. In this concluding chapter, novel insights are highlighted on, and 

recommendations for future investigations in this research area are outlined. 

 

8.1 Conclusions from this thesis 

The current availability of resolved drug/ligand complex structures for GPCRs such as the D2-

like dopamine receptors and CCR5 provide avenues to uncover atomic molecular level ligand 

recognition mechanisms and conformational dynamics. Understanding the dynamic signalling 

properties of GPCRs and the structural basis of their ligand recognition/binding-interactions 

enable full leverage on the power of rational drug design. The main aim of this thesis was to 

provide novel mechanistic insights into how dopamine receptors and CCR5 interact with their 

small molecule inhibitors and to apply a structure-based discovery approach to identifying new 

potential CCR5 inhibitor scaffolds.  

 

In deciphering the binding mechanism of atypical antipsychotic drugs and their effect on D2DR 

conformational dynamics, the following conclusions were made. 

i. Class II atypical antipsychotics adopts a favourable binding mode and interactions at the 

D2DR deep hydrophobic pocket. In contrast, the binding conformations of Class I atypical 

antipsychotics is shallow reaching out above the orthosteric binding pocket into D2DR 

extended binding pocket. 

ii. van der Waals interaction energy contribution dominates the higher binding affinity of 

Class II atypical antipsychotics at D2DR receptor compared to the relatively lower binding 

affinities of the Class I antipsychotics. 

iii. A unique salt bridge interaction with Asp1143.32 is common to all the studied Class II 

atypical antipsychotic drugs. This salt bridge is vital for inhibitors displaying high binding 

affinity at the aminergic subfamily of GPCR (Shi & Javitch, 2002). 
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In addition, the molecular mechanistic and conformational dynamics underlying the selective 

binding of the two bitopic antagonists, R-VK4-40 and Y-QA31, toward D3DR over D2DR 

were explored. R-VK4-40 and Y-QA31 adopt shallow binding modes at D3DR orthosteric 

binding pocket (OBP) and extended/second binding pocket (E/SBP), on the contrary, they 

display deep hydrophobic pocket binding at D2DR. The efficacy of bitopic compounds has 

been found to depend on their binding mode in the OBP, whereas their selectivity arises from 

their different interactions within the SBP (Newman et al., 2012). The favourable flexibility of 

bitopic compounds seems to be conferred by their linker, allowing R-VK4-40 and Y-QA31  to 

bind in the S/EBP of D3DR with higher selectivity. Also, two non-conserved residues 

(Tyr361.39 and Ser18245.51) have been identified in D3DR, due to their essential role in the 

selective binding of R-VK4-40 and Y-QA31. The estimated binding free energies also suggest 

an increase in van der Waals interactions and a relative decrease in entropy contribution were 

crucial factors that underlie the high-selectivity and affinity of the studied antagonists for 

D3DR relative to D2DR. 

 

Furthermore, this thesis has also provided a structural understanding and binding mechanistic 

of the novel 1-heteroaryl-1,3-propanediamine derivatives (Compd-21 and Compd-34) and 

Maraviroc at CCR5. The findings from this study have shown the structural basis for Compd-

21 and Compd-34 higher binding profile at CCR5 binding pocket compared to Maraviroc. The 

binding dynamics have revealed that the substitution of the phenyl group in Maraviroc with the 

thiophene moieties cumulatively engaged in higher affinity interactions with CCR5 binding 

pocket residues critical for gp120 V3-loop binding. These results corroborate the recent 

findings that Maraviroc blocks gp120 binding to CCR5 via direct competitive inhibition as 

opposed to earlier views of allosteric inhibition through conformational availability restriction 

(Shaik et al., 2019). 

 

Finally, the successful application of structure-based virtual screening techniques identified 

potentially new inhibitor scaffolds that displayed binding modes and interaction profiles at 

CCR5 binding pocket. These compounds made substantial interactions with residues vital for 

gp120 V3 loop binding.  
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8.2 Recommendations and Future Perspectives 

The deep hydrophobic sub-pocket binding of Class II atypical antipsychotic drugs may be 

explored in the design of the next generation of D2 dopamine receptor subtype-selective 

antagonists. The role of the unique salt bridge interaction of D2DR Asp1143.32 should be 

considered during the rational design of potential D2DR inhibitors. 

 

Bitipic compound design and their optimisation for their different interactions at D3DR E/SBP 

(selectivity) and OBP (higher affinity) may assist in the rational design of novel D3 dopamine 

receptor-selective antagonists with higher binding affinity. 

 

Further structural modifications at the thiophene substituent with functional groups that make 

stronger interactions with the identified residues critical for gp120 V3 loop binding will be 

beneficial. Also,  the addition of additional functional groups to the triazole ring may increase 

inhibitor competition with gp120 V3-loop with enhanced potency at CCR5 (Shaik et al., 2019). 

This offers a foundation for the onward structural modifications and rational design of novel 

potent antagonists of CCR5 in HIV-1 treatment. 

 

The identified potential CCR5 inhibitors have displayed promising interactions with residues 

critical for gp120 V3 loop binding. However, biochemical investigations of these compound 

scaffolds obtained from the in silico structure-based studies are still needed to verify their 

antiviral activity at CCR5. Furthermore, the selected compounds toward CCR5 add to the 

available chemical scaffolds for structural modifications and optimisations that may assist in 

the lead identification of more potent antiviral drugs of HIV-1. 
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